
Fraunhofer Institute for Medical Image Computing University of Bremen

*EXELLENT.
Universität Bremen*

Master Thesis

Automatic Classification of Non-
Mass Breast Lesions in Dynamic
Contrast-Enhanced MR Images

Mohammad Razavi

Un
ive

rs
ity

of
Br

em
en





*EXELLENT.
Universität Bremen*

MASTER THESIS

AUTOMATIC CLASSIFICATION OF
NON-MASS BREAST LESIONS IN DYNAMIC

CONTRAST-ENHANCED MR IMAGES

by

Mohammad Razavi

in partial fulfillment of the requirements for the degree of

Master of Science

in Digital Media

at the University of Bremen,

to be defended publicly on Tuesday October 19, 2015 at 2:00 PM.

Supervisors: Prof. Dr. Gabriel Zachmann
Prof. Dr. Udo Frese

Advisor: Dr. Lei Wang, Fraunhofer Mevis

This thesis is confidential and cannot be made public until October 31, 2015.





ABSTRACT

Purpose
Today, breast cancer is the highest frequent diagnosed cancer and the most common cause of death
among women. The early detection of cancer tumors via the screening programs is the essential
policy to increase survival rates. Malignant cancer tumor, in its developed stage, can attack the
surrounding cells and metastasis to distant body parts. Metastasis is the main cause of death in
patients. In order to prevent that, the malignant cancer tumor has to be detected and treated in its
early stage.

Methods
Among lesion types the non-mass-like enhancements are the one with complex distribution pat-
terns of enhancing tissue dispersed between normal tissues, thus their detection is not simple and
more challenging than the masses. To fulfill this task, a semi-automatic mean-shift algorithm is used
to segment totally 106 cases of non-mass lesions acquired from MR images of 86 patients (38 benign
and 68 malignant). First, the segmented lesion volumetric object was packed using a sphere packing
algorithm. Then, all sphere center coordinates were normalized. Next, a combination of different
features was extracted from the internal spheres using various histograms, Zernike moments, and
graph formation features. Finally, random forest machine learning is trained to be integrated into
CAD (computer-aided diagnosis) system to do the classification.

Results
Classification is done using 10-fold cross validation technique in patient level over the ground truth
dataset. In differentiating between malignant and benign lesions, an accuracy of 89.62%, precision
of 90.1% and area under the ROC curve (AUC) of 0.972 is achieved using Random Forest algorithm
by applying Mean Decrease Accuracy and Principal Component Analysis (PCA) feature selections.

Conclusion
The results suggest that the morphological features can be used for developing automated breast
CAD for early detection of malignant non-mass lesions to achieve a high diagnostic performance.
A higher accuracy can be even achieved, by taking advantage of morphological combined with ki-
netic, and texture features.

Keywords: breast MRI; non-mass; enhancement; lesion; classification; sphere packing; morphol-
ogy; feature extraction; computer-aided diagnosis

Mohammad Razavi
Bremen, October 2015
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1
INTRODUCTION

The research described herein was carried on at the Fraunhofer MEVIS1 Institute for Medical Image
Computing, located in the city of Bremen in Germany between February and July 2015. It consti-
tutes part of ASSURE project2, a European Union funded research project seeking to develop image
analysis tools to assist personalize breast cancer screening based on risk and breast density markers.

At the moment, women’s breast screening is almost solely done by mammography. However,
for the women with dense breasts, mammography shows low sensitivity for detecting breast cancer.
For that reason, new MRI based screening methods and automated breast ultrasound imaging need
to be developed. Using new techniques for prospective personalized screening will minimize the
risk of a particular patient to have a cancer missed at its early stage, resulting in decreased mortality
and increased quality of life due to less radical treatment options.

Statistically, after lung cancer, breast cancer is the second most frequent one and the fifth most
common cause of cancer related deaths in the world. Only among women, breast cancer is the high-
est frequent diagnosed one and the most common cause of death in both developed and developing
countries [1]. The early detection is the essential policy to increase survival rates.

As a result, screening programs based on x-ray mammography have been introduced which have
some recognized constraints such as the matter of overlapping image of 3D tissue into 2D [2], low
specificity in the detection of malignancy, and low sensitivity for women with dense breast tissue
[3]. Therefore, the exploration of alternative imaging modalities led to using new techniques, in-
cluding magnetic resonance imaging (MRI), sonography (ultrasound) and nuclear medicine (PET
and SPECT) imaging [4]. These modalities are commonly used in patients with known or suspected
breast cancer or in the screening of high risk patients. Amidst these modalities MRI shows the most
promise for improved screening of high risk women [5].

In the modern breast MR imaging, which is based on dynamic contrast-enhanced (DCE) MRI,
three dimensional T1-weighted images of one or both breasts are acquired at different time intervals
before and after the injection of a contrast agent containing gadolinium. Normally, a clinical DCE-
MRI scan consists of one pre-contrast volume, followed by four to six contrast-enhanced volumes,
in each there are a large number of 2D slice images are acquired in intervals about 60 to 120 seconds
[5].

Based on the difference of voxels intensity level in the captured volumes, a signal-intensity time
curve can be acquired which its shape is an important criterion to discriminating lesions and their

1Fraunhofer MEVIS website: http://mevis.fraunhofer.de [Accessed on 26 August 2015]
2ASSURE project website: http://www.assure-project.eu [Accessed on 26 August 2015]
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2 1. INTRODUCTION

types based on their kinetic features [6]. The modality of post-initial enhancement can be used to
distinguish malignant and benign tumors: the curve may plateau, decline, or continue to increase
more slowly with a delayed washout. However, this characteristics do not guarantee the accurate
detection [5].

Besides kinetic characteristics, morphological features can also play and important role in le-
sion type differentiation. For instance, a lesion is identified as malignant if there is a focal mass
with irregular or speculated margins and benign lesion is identified as the one having smooth or
lobulated margins with internal septations or if the mass is cystic [7].

Automatic analysis of cancer tumors using computer techniques is necessary, since manual in-
tegration along with observation of DCE-MRI volumes is a labor intensive and even subjective task
for radiologists [8]. Utilizing the modern Computer-Aided Detection (CADe) and Computer-Aided
Diagnosis (CADx) systems can improve the objectivity, consistency as well as the efficiency of breast
lesion analysis. Hence the DCE-MRI presents a number of challenges for automatic examination:
the highly variation of the temporal and spatial distributions of contrast agent in suspicious tissue
(both for an individual patient and between patients) [9], and also in comparison to CT imaging,
the observed MR signal cannot be easily calibrated [5].

Some recent studies have achieved high discriminating power detecting invasive breast lesions
using a quantitative combination of morphological, kinetic, and spatio-temporal features. They
achieved the degree of diagnostic sensitivities up to 97% and specificities up to 76.5% [10, 11]. In
such cases, MRI reaches a very high sensitivity in the detection of invasive breast cancer due to
both the typical appearance (ill-defined shape, stellate borders, and rim enhancement) of malignant
tumors and characteristic signal intensity (SI) time courses of contrast enhancement [10].

Most of the studies on lesion detection are performed in the preoperative staging of patients with
suspicious lesions, including predominantly tumors with an extension greater than 2cm, in which
MRI provides an accurate estimation of invasive breast cancer tumors [10, 12]. In contrast, for non-
mass-like enhancing lesions, MRI shows less sensitivity with more than 40% of the false-negative
diagnosis [10]. Therefore, double reading is suggested for such cases which is time-consuming, and
as an alternative, a computer-assisted system is suggested [13].

The diagnosis of non-mass-like enhancement lesions is a highly challenging task, since they
exhibit a heterogeneous appearance in breast MRI with high variations in kinetic characteristics
and typical morphological parameters [14, 15] and have a lower reported specificity and sensitivity
than mass-enhancing lesions. Early detection of such lesions is highly beneficial since it reduces
the biopsies numbers. However, due to their much lower sensitivity and specificity compared with
mass-like lesions, and the need for more advanced algorithms, very few studies investigated the
characterization of non-mass lesions so far [10].

The focus of the current work, is on classification of the non-mass lesions to benign or malignant
types, using merely the morphological features. After segmenting the lesion from the MR image
using Mean Shift algorithm, the segmentation is treated as a 3D volumetric object. Then it is filled
internally by spheres using Protosphere, GPU-assisted prototype guided sphere packing algorithm
for arbitrary objects [16]. By taking advantage of a novel approach, several shape feature vectors are
acquired from each segmentation sample. Finally a multiple kernel random forest machine learning
technique classifies the lesion types based on the serial combination of those features acquired from
a ground truth dataset of 106 lesions.

This novel approach exhibits high classification accuracy of 89.62%, precision of 90.1 with the
area under the curve (AUC) of 0.972 using 10-fold cross validation technique over 106 lesion samples
obtained from MR images of 86 patients.
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1.1. STRUCTURE OF THE THESIS

The remainder of this thesis is organized as follows:

• Chapter 2 presents background knowledge in support of the next chapters. First, an introduc-
tion of concepts in MRI, followed by an overview of breast MR imaging and its physiopathol-
ogy basis. The chapter then contains a section on breast cancer, and its appearance in MRI,
thus the kinetic, morphological and textural features of the lesions. Finally, the literature re-
view and related work are presented.

• Chapter 3 presents the materials used with a description of the method. First, the specifica-
tion of the “ground truth” data, then the method outline starting from pre-processing by mo-
tion compensation of MRI sequences and lesion segmentation from MR subtraction image
using provided mask and mean shift algorithm. The processing continues by sphere packing
the lesions’ volume, normalization of the spheres and feature extraction. Four feature extrac-
tion methods were used, including Volume-Radius histogram, 3D spherical shape histogram,
Graph topological features and Zernike invariants. Finally the Random Forest machine learn-
ing is introduced to evaluate the method results using the combination of all the features.

• Chapter 4 shortly describes the MeVisLab software and the proceeding pipeline used in this
work. A short description of each module in the network is provided considering their con-
nections and data-flow.

• Chapter 5 presents several measures for performance evaluation followed by comparisons
of evaluation using several machine learning algorithms. Next, using feature selection, the
number of features reduces using Mean Decrease Accuracy and Principal Components Analysis
methods.

• Chapter 6 summaries the important findings of the research and draws conclusions from
them. It also outlines the limitations of the research and failed experiments, then provides
future directions.





2
BACKGROUND AND THEORY

2.1. ANATOMY OF THE BREAST

Knowing about breast anatomy is important in order to understand the development of cancer tu-
mors. The two breasts are formed during the fetal period by epidermis, a depression which forms a
mammary pit on the local of the mammary gland. The region where appear the mammary glands
is located on left and right sides of the upper ventral region of the trunk. The breasts exist in both
woman and man, but the mammary glands are normally most developed in female, except in some
particular circumstances related to hormonal problems [17].

As can be seen in Figure 2.1, each breast has a nipple with a series of openings of lactiferous
ducts, where milk emerges during the lactation process. Areola is a pigmented area of skin which
surrounds the nipple. The skin at the areola has a convoluted surface and contains many sweat
and sebaceous glands which open directly to the skin surface. The oily secretion of the sebaceous
glands is protective during lactation. In each breast there is a mammary gland, which produces milk
and consists of 15 to 20 lobes which are separated by adipose tissue. Each lobe consists of smaller
components called lobules, composed of clusters of milk secreting glands called alveoli [18]. In the
lactating process of woman, the alveoli secrete milk into the mammary ducts which they expand
to form lactiferous sinuses near the breast, where there might be stored some milk before draining
into the lactiferous duct. In lobules or ducts are the places that cancer usually develops [19].

There are some factors which makes the composition of breast vary from person to person, in-
cluding age, pregnancy, lactation, menstruation, and the menopause, which makes alveolar struc-
tures regress and reduce the vascularity of the connective tissue [20].

2.2. BREAST CANCER

Cancer is a kind of malady in which normal body cells are altered in appearance and functional-
ity. They start growing disorderly and create a tumor (see Figure 2.2) [18]. Breast cancer is usu-
ally a tumor, appears from the epithelium and developing in the lactiferous ducts; it infiltrates the
parenchyma (the functioning tissue of an organ other than the supporting or connective tissue). It
often happens to women who have not given birth to a child or breastfed. The cancer lesion gen-
erally appear in the tipper outer quadrant of the breast, since this is the location of most of the
glandular tissue. A slow-growing breast cancer may take up to 10 or more years to become palpable,
or to reach the size of a small pea [21].

The breast tissue can be divided into two major parts: the non-functioning part consist of non-

5



6 2. BACKGROUND AND THEORY

Figure 2.1: The anatomy of the breast (Figure taken from www.cancer.gov).

Figure 2.2: Normal cells and tumor cells (Figure taken from macmillan.org.uk).

dense fatty tissue, which only helps to keep the other tissues, and the functioning dense part reflects
the proportion of epithelial and stromal tissue in the breast (fibroglandular tissue). Breast cancers
originate in epithelial cells, so greater areas of fibroglandular tissue may reflect a main part of cells
that are at risk of carcinogenesis and/or an increased rate of epithelial proliferation. Therefore,
breast tumors do not often appear in fatty or non-glandular tissue [18]. It is plausible that many of
the established breast cancer risk factors influence risk through their effect on density [22]. It should
be noted that, breast cancer risk in women is 100 times more than men. Only less than 1% of men
get cancer, often in high age and it is not usually detected in early stage [20].

Benign – Malignant
A dubious breast tissue is called malignant at the point that it attacks other cells around it and
spread (metastasize) to distant other body parts [23]. Metastasis occurs when genetically unstable
cancer cells adapt to a tissue micro-environment that is far from the main tumor [24]. In order to
prevent metastasis, the cancer has to be detected and treated, since instead of the primary tumor,
its metastasis at distant sites, are the main cause of death in patients [25].

When a tissue is suspicious and not yet malignant, it is called benign. Such tumors are abnormal
growths and can become larger, but they do not spread outside the breast to other body organs.

http://www.cancer.gov/types/breast
http://www.macmillan.org.uk/cancerinformation/teensandyoungadults/whatiscancer/whatiscancer.aspx
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In short, a suspicious tissue is called benign when it has not shown malignancy (see Figure 2.3(a)).
This means the tissue can grow larger, but does not spread to other parts of the body, thus is not a
life threat yet [18].

(a) (Figure taken from ubang75.com) (b) (Figure taken from cancerresearchuk.org)

Figure 2.3: Illustrations of breast lesions. Left: Breast tumors often appear in the functioning tissue of the breast and
they even might appear on the patient’s skin. Right: Two types of non-invasive breast tumors, Ductal Carcinoma In Situ

(DCIS) and Lobular Carcinoma In Situ (LCIS), which might be found inside a milk duct or lobules.

Nevertheless, the benign condition of breast is important, since the women who has benign
tumors are in danger of developing cancer [23].

Breast density reflects the proportion of epithelial and stromal tissue in the breast, which is more
inclined to have breast cancer. Therefore, breast density has the potential to be used as a predic-
tor of breast cancer risk. This factor can be used to monitor risk lowering interventions and as an
intermediate end point in studies of breast cancer etiology [22] (see Figure 2.4).

Invasive – Non-invasive
Invasive cancers are the ones that have spread to the healthy surrounding cells beyond their own
developing tissue. Non-invasive breast cancers are usually the abnormalities in cells found inside
the functioning tissue and have not spread to outer areas yet. Figure 2.3(b) shows two types of
non-invasive tumors, Ductal Carcinoma In Situ (DCIS) and Lobular Carcinoma In Situ (LCIS), which
might be found inside a milk duct or lobules. In some cases, DCIS may become invasive and spread
to surrounding tissues [18].

Mass – Non-mass
According to Breast Imaging Reporting and Data System (BI-RADS) [26], the breast cancers found in
Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) (described in section 2.3),
can be categorized as mass or non-mass-like enhancements. In enhancing tissue of DCE-MR im-
age, mass-like tumors are compact regions which are clearly notable from the healthy tissue. In

http://www.ubang75.com/clinic/clinic01_03.php
http://www.cancerresearchuk.org/about-cancer/type/breast-cancer/about/types/invasive-ductal-breast-cancer
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(a) (b)

Figure 2.4: (a) shows an MR image of a breast with "scattered fibroglandular" tissue and low density; (b) shows an MR
image of a breast with "heterogeneously dense" breast tissue (more than 50%) (Figure taken from staceyvitiellomd.com).

contrast, non-mass-like enhancements have complex distribution patterns of enhancing tissue dis-
persed among normal tissue. It is not clear to distinguish which part belongs to the glandular tis-
sue of the breast and which tissue is part of the tumor, since the non-mass-like tissue is typically
scattered around it [18]. Figure 2.5 shows two subtraction images of second and first different MR
sequences (t1− t0), including both types of mass and non-mass lesions.

Figure 2.5: Dynamic subtraction images of the intermediate post-contrast breast MR sequence, including
enhancements. Both shows the subtraction image of the first two MR sequence (t1− t0) with a mass enhancement (on

left) and a non-mass-like enhancement (on right). Mass-like enhancements are compact regions which are clearly
notable from the healthy tissue, in contrast, non-mass-like enhancements have complex distribution patterns of

enhancing tissue dispersed among normal tissue.

Angiogenesis in tumor vessels
The malignant lesions in their early stage are merely a few millimeters in diameter which are com-
monly vascular. Depend on the diffusion and vessel growth, they need nutrition. The structure of
the vessels in a tumor differs from the normal vessel structure. The vasculature in tumors is het-
erogeneous, the capillaries are coarse, their walls have lots of openings, and the vessels are more
fragile. These disorders occur because of the rapidly growing, which make the capillaries in the tu-
mor leaky. The high permeability of the vessels plays a significant role in DCE-MRI, since they let
the fast diffusion of contrast agent to the tumor [18].

http://staceyvitiellomd.com/what-breast-density-means-to-you/
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The most common imaging modality to detect breast cancer is mammography (X-ray); however,
its sensitivity reduces significantly in one screening series from 80% to 30% by increasing breast
density, which is quite common in younger patients [27]. Therefore, MRI has become the preferred
modality for high risk patients, especially with high breast density and history of LCIS or DCIS [18,
27].

As Figure 2.6 shows, to perform breast MRI, the woman usually lies face down, with her breasts
positioned through special openings in the table for breasts. The breast positioning and her move-
ments are checked by the technologist through a window. Then patient usually enters a tunnel with
magnetic field which creates pulses of radio waves sending from a scanner. Once the radio waves
hit the nuclei of atoms in body cells, they send out radio signals. The received signals are converted
into an MR image breast part.

Figure 2.6: Patients position while breast MRI is performed. During the breast MRI, the patient usually lies face down,
with her breasts positioned through openings in the table (Figure taken from cornell.edu).

In comparison to two-dimensional X-ray images, MRI is a three-dimensional imaging technique
that has the ability to produce cross-sectional images with a high spatial resolution of about 1 mm.
Due to the high sensibility, breast MRI has drawn significant attention in recent years. This high
sensitivity is achieved due to the use of contrast agents, such as gadolinium - diethylenetriamine-
pentaacetic acid (Gd-DTPA) with regard to vascular changes in the tissue (described in 2.2) which
causes intensity enhancement (see Figure 2.7). It first increases the vascularity resulting in an in-
crease in contrast agent intake as it is in the blood. Then, it results in vessel permeability as it leads
to increased leakage of contrast agent in the tumor. The signal enhancement level seen on T1-
weighted images appertains to a number of factors, including tissue perfusion, capillary permeabil-
ity to the contrast agent, the volume of the extracellular leakage space, and the contrast agent dose
[18]. Furthermore, it also depends on the phase of the menstrual cycle in premenopausal women.
The second week of the menstrual cycle is the recommended time to perform breast MRI, because
of the hormonal responsiveness of the breast tissue [28].

The Breast Imaging-Reporting and Data System (BI-RADS) [26], published by the American Col-
lage of Radiology (ACR) [29], is a lexicon made to help standardizing radiologists’ report on breast
MRI findings [5].

2.4. PATHOPHYSIOLOGY OF LESION CHARACTERISTICS

Benign and malignant lesions vary in morphology, enhancement intensity and kinetics. For exam-
ple, round or oval shapes of masses are highly indicative of benignity, since ill-defined or indistinct

http://weill.cornell.edu/mri/MRI/Chest/breast_mass_mri.htm
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Figure 2.7: Images acquired from DC-MRI several time intervals before and after the injection of contrast agent. The
curve shows the intensity-time diagram for the value of a single voxel of the DC-MRI sequence on top. The most left
image shows image before injection, the rest to the right show the increase in signal intensity after injection of the

contrast agent.

margins indicate lesion infiltrating surrounding tissue. Based on qualitative analysis, in malignant
tissue, the signal intensity peaks early compared with normal tissue mainly because of increased
vascularisation and leakiness of tumor vessel [5]. Conventional fibroglandular tissue commonly
exhibits a low level of enhancement at an early time after contrast administration, and then a grad-
ual, faint enhancement over time. In the following, more details will be discussed regarding these
features.

2.4.1. MORPHOLOGICAL FEATURES

Morphologically, lesions can be categorized into focus/foci, mass, and non-mass-like enhance-
ments.

• Focus is a breast lesion with the size smaller than 5 mm.
• Mass is a 3D space-occupying lesion smaller or equal to 5 mm. It is characterized by shape

(round, oval, lobulated, irregular), rim (smooth, irregular, spiculated) (see Figure 2.8), and in-
ternal mass enhancement characteristics (homogeneous, heterogeneous, rim enhancement,
dark internal septations, enhancing internal septations, and central enhancement).

• Non-mass-like enhancement can be characterized by the distribution pattern (focal, linear,
ductal, segmental, regional, multiple regions, and diffuse) and internal characteristics (ho-
mogeneous, heterogeneous, stippled/punctate, clumped, reticular/dendritic) (see Table 2.1).
Further categorizations are whether the lesion is symmetric or asymmetric between both
breasts, lymphadenopathy, and invasion of pectoralis muscle [28].

Margin assessment is one of the most important features in characterization of a breast mass
with a high positive predictive value (PPV). Masses with smooth rims highly implies benign lesion.
As reported in [32, 33], 97% to 100% of masses with smooth rims were benign. Poorly enhanced
lobulated masses and the one with non-enhancing septations also suggested benignity.

A homogeneous internal enhancement pattern has a high predictive value for a benign lesion
such as a fibroadenoma. However, the pattern can also be a presentation of invasive cancer [28].
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Figure 2.8: Schematic illustration of morphological features exhibited by mass lesions (Figure taken from [30])

Mass-like Enhancement Shape Round, Oval, Lobulated, Irregular
Margin Smooth, Irregular, Spiculated

Internal Enhancement
Characteristics

Homogeneous, Heterogeneous,
Rim Enhancement, Dark Septations,
Enhancing Septations,
Central Enhancement

Non-Mass-like Enhancement Distribution
Focal Area, Linear, Ductal, Segmental,
Regional, Multiple Regions, Diffus

Internal Enhancement
Pattern

Homogeneous, Heterogeneous,
Stippled/Puntate, Clumped,
Reticular/Dendritic

Table 2.1: Lesion’s morphology according to the BI-RADS™ standard. A mass is characterized by shape, rim, and the
internal enhancement characteristics. A non-mass-like enhancement is characterized by the overall distribution pattern

of enhancement and the internal enhancement characteristics (Figure taken from [28, 31]).

In non-mass-like enhancement the area is neither a mass nor a blood vessel, thus the enhance-
ment pattern is distinct from normal surrounding breast parenchyma and there is no space-occupying
effect. These lesions include DCIS, ILC, mastopathic changes (focal adenosis), and fibrocystic changes.
In these cases, the focal area is defined as a single, small, and confined abnormal enhancing area
which occupies less than 25% of a breast quadrant. It varies from a focus, which has the size of
less than 5 mm and usually has fat or normal glandular tissue interspersed between the abnormally
enhancing components, except when it is a focal area of homogeneous enhancement [28]. Based
on quantitative findings, about 50% of benign lesions with a non-mass-like enhancement, present
a linear-enhancement distribution [34].

In many cases, the enhancements form two or more large volumes of tissues, not conforming
to ductal distribution are separated by normal tissues or fat appearing throughout the fibroglandu-
lar tissue of the breast. Although multi-centric benign carcinoma, including IDC or ILC, may also
exhibit such appearance, they cannot simply be categorized as benign [28].

Enhancement’s symmetry is also can be exploited to further characterizations. Mirror-image
like symmetric enhancement in both breasts in any distribution is highly suggestive of benign changes
[28].
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There are several geometrical and morphological features which are commonly used among re-
searchers as shape descriptors: volume ratio, surface area, compactness, normalized radial length
(NRL) mean, sphericity, NRL entropy, NRL ratio, convex hull, and roughness. More detailed descrip-
tions of them can be found [35–37]

2.4.2. KINETICAL FEATURES

In this study the main focus is merely on morphological features of enhancements. Although stud-
ies have shown that including kinetic data on dynamic contrast-enhanced imaging and diffusion-
weighted MR imaging in addition to morphological characteristics, exhibits a higher diagnostic ac-
curacy in the characterization of breast lesions [10].

In terms of kinetic information, the dynamic contrast-enhanced (DCE) curve is characterized
by the enhancement of the tumor due to the contrast agent, mainly by considering the mean gray
values of each tumor region and how it develops over time [10]. The radiologist can assess the en-
hancement kinetics qualitatively by paging through the sections and time points, observing factors,
including the initial enhancement, the presence or lack of a peak enhancement, and the subsequent
delayed enhancement. However, this method depends mainly on the experience of specialist [38].

Kinetic Enhancement Curve Assessment
As can be seen in Figure 2.9, enhancement kinetics curve features can be separated in two phases:
the initial phase and the delayed phase. In the initial phase, the features are "slow", "medium",
or "fast" and in the delayed phase, there are "persistent", "plateau" or "washout". A kinetic curve
showing washout or plateau after reaching the peak within 2−3 minutes is commonly observed in
invasive breast cancer; a kinetic curve showing persistent enhancement, continuing throughout the
entire time period is commonly observed in benign diseases [6].

This trend is not always reliable experimentally, especially for non-mass-like enhancements. It
may be used with confidence in differential diagnosis only in lesions showing rapid enhancement
and washout pattern. Therefore, an analysis of both morphology and kinetic curve should be taken
into account in the interpretation [28].

2.4.3. TEXTURAL FEATURES

From the radiography point of view, texture is a repeating pattern of local variations in image inten-
sity, and is characterized by the spatial distribution of intensity levels in a particular area. Haralick
et al. [39] defined ten co-occurrence matrix (GLCM) texture features, including energy, maximum
probability, contrast, homogeneity, entropy, correlation, sum average, sum variance, difference av-
erage and difference variance. These features consider the spatial relationship of pixels/voxels in
gray-level and are generally used to characterize lesions without considering the mass factor [35, 37].

GRAY LEVEL CO-OCCURRENCE MATRIX

To give a uniform definition of gray-level co-occurrence matrix for both 2D and 3D data. Consider
an image (either 2D or 3D) which is first re-binned to G (a positive integer) gray levels. Displacement
vector d describes the difference of spatial locations of two voxels.

For 2D images, the possible spatial relations of a voxel with 8 neighboring voxel-pairs in 4 in-
dependent directions (θ = 0◦,45◦,90◦,135◦) are shown in Figure 2.10(left). In 3D images, the dis-
placement vector d can still be decomposed into a norm-1 distance d and a direction, which are
specified by two angles: azimuth φ, and zenith θ (Figure 2.10(right)). In 3D space, there are totally
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Figure 2.9: Contrast Enhancement Kinetic Curves. The contrast uptake curves can be used in breast lesion diagnosis.
Ideally, there is no early phase enhancement and persistent delayed phase in normal fibroglandular tissue while it has

low variable enhancement. Observing a washout behavior in the delayed phase usually means invasive cancers.
Normally, benign lesions have persistent kinetics in the delayed phase, but they can also show washout or plateau

kinetics (Figure taken from [38]).

26 neighboring voxel-pairs in 13 independent directions [40].

Figure 2.10: Texture features based on the spatial relations of a pair of voxels. Left: Spatial relations of a pair of voxels in
2D. For a particular voxel (gray), it has 8 neighboring voxels (dark) of norm-1 distance d in 4 independent directions.

Right: Spatial relations of a pair of voxels in 3D. For a particular voxel (gray), it has 26 neighbors (dark) of norm-1
distance d in 13 independent directions (Figure taken from [40]).

For an image of G gray levels, the G ×G gray level co-occurrence matrix Pd for a displacement
vector d is defined as follows:
The entry (i , j ) of Pd is the number of occurrence of voxel-pair of gray levels i and j whose spatial
locations are a vector d apart. After normalization by the total counts, the entry (i , j ) of Pd , denoted
as p(i , j ), represents the (empirical) probability of occurrence of voxel pair of gray levels i and j
whose spatial locations are a vector d apart. In this definition, the co-occurrence matrix Pd is a
function of the displacement vector d .

Now, a set of texture features defined by Haralick et al. [39] can be extracted from the co-
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occurrence matrix to quantify the spatial dependence of gray-level values. Equation 2.1 shows more
detailed calculations of several features such as Angular Second Moment, Contrast, Correlation,
Sum of Squares, Inverse Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy,
Difference Variance, and Difference Entropy in 2D images. The definitions and explanations of the
complete set of features can be found in [39].

Angular Second Moment =∑
i

∑
j

{p(i , j )}2
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Ng−1∑
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n2


Ng∑
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Ng∑
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px−y (i ) log{px−y (i )}

(2.1)

(Equations are taken from [39])

2.5. RELATED WORK

Unlike most previous works which have put emphasis on kinetical and textural features analysis for
mass lesions, this study focused merely on investigating the morphological features efficacy among
non-mass-like enhancements in breast MRI lesion diagnosis [37].

Conventionally in most of the existing scientific works, the evaluation is done on diagnostic im-
pressions generated by visual examination of morphological features and contrast enhancement
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kinetics using descriptors defined in the BI-RADS (Breast Imaging-Reporting and Data System) lex-
icon [26, 41].

Current commercially available computer-aided diagnosis (CAD) systems are specialized for au-
tomated detection and diagnosis of mass lesions that are applicably characterized by shape and ki-
netic descriptors according to the BI-RADS lexicon [10]. Such systems only depict the suspicious
lesion area using intensity level threshold filter in addition to some enhancement kinetic diagnosis
[42–44]. Further morphological analysis and the final diagnostic impression have to be done by the
radiologist which depend heavily on his/her level of experience [37].

During the enhancement diagnosis of malignant non-mass lesion, numerous cases often do not
show the expected wash-out pattern in enhancement kinetics. Therefore, this very advantageous
diagnosis pattern of mass lesions has a confined diagnostic value for non-mass lesions [45, 46].
Additionally, poorly defined boundaries in non-mass lesions bring more hardship in morphological
analysis [37, 43, 47].

Plevritis et al. stated that, by combining dynamic enhancement kinetic data and morphologic
characterization, more accurate assessment is acquired rather than either method alone. The rea-
son is that data acquisition from each characterization is based on a separate pathophysiologic
mechanism [48, 49]. Therefore, usually analyzer systems characterize the morphological features
along with their enhancement kinetics after applying automated or manual segmentation on the
lesion. As the final step, they build a classifier based on the combination of those features which
yield the highest diagnostic performance [37].

Newell et al. [37] developed methods to characterize the morphology, enhancement kinetic and
textural features of both mass and non-mass lesions to investigate the diagnostic performance to
differentiate between malignant and benign lesions. For each mass 8 shape/ margin parameters
(volume, surface area, compactness, normalized radial length (NRL) mean, sphericity, NRL entropy,
NRL ratio and roughness) and 10 enhancement texture features were obtained. Compactness is
defined as the ratio of the square of the surface area to the volume of the lesion. This index for a
sphere is the lowest and for an irregular undulating shape, such as a speculated lesion, is higher.
NRL is defined as the Euclidean distance from the object’s center of mass to each of its contour
pixels [35, 50].

They pointed out that, since there were no clearly defined boundaries for non-mass lesions,
these shape parameters could not be reliably analyzed [37]. For the non-mass-like enhancement,
only the texture parameters were considered. To build a diagnostic model they used an artificial
neural network (ANN) machine learning technique. For the masses, they reached an area under
the ROC curve (AUC) of 0.87 in differentiating between malignant and benign lesions. The kinetic
parameter reached a comparable AUC of 0.88. The combined morphological and kinetic features
improved the AUC to 0.93, with a sensitivity of 0.97 and a specificity of 0.80. For non-mass-like
enhancement, the texture analysis achieved an AUC of 0.76 and the kinetic parameter reached an
AUC of 0.59, with a low added diagnostic value [37].

Nie et al. [35] investigated the feasibility of using quantitative morphology/texture features of
breast lesions for diagnostic prediction. They carried out the automated lesion segmentation, quan-
titative feature extraction, including eight morphological parameters and 10 GLCM texture features,
diagnostic feature selection using artificial neural network (ANN), and lesion classification. They
achieved the area under the ROC curve of 0.86 and AUC of 0.82.

Hoffmann et al. [10] present a novel technique for establishing the automated diagnosis of non-
mass-enhancing lesions. Extracting both morphological and kinetic features is being done in an
automated step and use them for lesion detection. In addition to kinetic features, they apply Zernike
velocity moments to acquire the spatio-temporal behavior of the lesions. The evaluation is done by
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SVM automated classification quantitatively and qualitatively. They came to the conclusion that
kinetic features are more discriminative in the case of non-mass-like enhancing lesions followed by
the morphological ones.

This study only focuses on morphological feature extraction using the novel sphere packing
technique. More details will be described in the upcoming chapter.
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MATERIALS AND METHOD

3.1. MATERIALS

PATIENTS DATASET

For this study, a data set of coronal T1-weighted MR breast volumes from 86 different patients –
who were diagnosed having non-mass lesions by MRI scan – were collected within the years 2003
and 2009 from the Radboud University Nijmegen Medical Center in the Netherlands. All the patients
were scanned in prone position. The age of screened women ranged from 23 to 76 years (45.84 ±
11.97 on average). Breast MRI examinations were performed on either a 1.5 or 3 Tesla Siemens
scanner (Magnetom Vision, Magnetom Avanto and Magnetom Trio), with a dedicated breast coil
(CP Breast Array, Siemens, Erlangen). Clinical imaging parameters varied; matrix size: 256×128×
256× 96; slice thickness: 1.3 mm; slice spacing: 0.625 - 1.25 mm; flip angle: 8, 20 or 25 degrees;
repetition time: 7.5 - 9.8 ms; echo time: 1.7 - 4.76 ms.

GROUND TRUTH

In total 106 non-mass lesions of different types (38 benign and 68 malignant) were examined. The
region of interest (ROI) of cases were provided by an experienced radiologist as binary spherical
masks in a separate dataset. As Figure 3.1 shows, by overlaying the masks on original MR image, I
was able to focus only on the area of breast in which there are lesions and therefore, a more precise
segmentation could be achieved. Section 3.3.2 describes the segmentation process in details.

Figure 3.1: The breast MRI with an overlay provided by the radiologist. The ROI mask by radiologist (the red overlay)
can simplify finding the lesion position and focus the segmentation on the specific area with the lesion

17
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It should be mentioned that, the MR scans in the dataset are not ready yet to be processed since
there might be some motion artifacts between different MR sequences. In order to get a better
segmentation, the probable motion must be corrected. Motion artifacts play an important role in
correct diagnosis of non-mass-enhancing lesions [10]. This pre-processing step is described in Sec-
tion 3.3.1 with more details.

3.2. METHOD OUTLINE

In this study, the processing pipeline can be briefed into three main steps as shown in Figure 3.2.

1. Preprocessing: this step commences with applying motion compensation on DC-MRI data
to remove most of the artifacts from images acquired at different time intervals. Then, a semi-
automatic mean shift segmentation is performed on the data to extract the lesion volumetric
shape from the image.

2. Feature extraction: in this step the 3D lesion volume acquired from the last step is filled with
spheres using sphere packing algorithm. The internal spheres data, including center coordi-
nates and their radius is obtained to generate further features. Before using internal spheres
data, the coordinate values of spheres have to be normalized and rescaled to the unit length.
Next, three kinds of features are extracted, including volume-radius histogram, 3D spherical
shape histogram, and graph topological features which will be defined in the following sec-
tion. Furthermore, in this very step, the Zernike invariants are calculated directly from the
lesion 3D volume.

3. Classification: all the acquired features are combined linearly as an all-inclusive feature vec-
tor to be provided to the classifier. The, Random forest classifier is trained using a dataset of
the feature vectors from all the sample lesions. Finally, the evaluation is done using 10-fold
cross validation method.

1. Preprocessing

Motion compensation

Lesion Segmentation

2. Feature Extraction

Radius-Volume
Histogram

Shape Histogram

Graph Features

3. Classi�cation

Create Training Set

Classi�er Training

Decision Making

Zernike FeaturesSphere Packing

Histogram Generation

Figure 3.2: The proposed lesion classification process workflow. From left to right, preprocessing includes motion
compensation and semi-automatic mean shift segmentation. Feature extraction consists of sphere packing of lesion,

extracting two kinds of histogram features, graph topological features and Zernike features. Classification contains
combining all sample dataset and training the random forest classifier to differenciate the lesion type between benign

and malignant.
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3.3. PRE-PROCESSING

3.3.1. MOTION COMPENSATION

In MR imaging, to observe the uptake of the contrast agent, an MR scan is acquired prior to the
injection, followed by a dynamic sequence of MR scans. The uptake rate can be acquired from the
difference between pre and post-contrast images. However, this might not be so easy because of
mis-registrations, caused by patient motion. In particular, motions such as respiratory motion [51],
muscle relaxation, and coughing during image acquisition [52]. Often patient motions can reduce
the interpretability of breast MRI; however, for scans with strong motion, it might be necessary to re-
call the patient for a repeated scan. In this work, a fully automated tool, based on image-processing
introduced by Wang et al. [52], is used to detect and quantify motion for unambiguous scan quality
evaluation.

Figure 3.3 shows the blurred maximum intensity projections (MIPs) caused by motion between
pre-contrast time (t0) and following post-contrast sequences (t1. . . tn), as they are based on the
subtraction of t0.

Figure 3.3: Maximum intensity projection images of the difference image t1− t0 of the same patient. Top, represents a
case without motion. Bottom represents a case with moderate motion in both breasts (Figure taken from [52])

To correct the motion artifacts of the used dataset, I utilized the motion compensation tech-
nique presented by Wang et al. [52]. As can be seen in Figure 3.4(a), motion artifact quantification
between t0 and t1 is done by detecting the prominent edges delineating the boundary contours of
parenchyma, skin and pectoral muscle in both t0 and t1. Using a fully automatic breast segmenta-
tion technique by Wang et al. [53], edge detection enclosed only to the breast internal region and
irrelevant motion that occurred in the thorax, such as heart, lung or liver, was excluded from pro-
cessing. Then, the Canny edge detection algorithm using a Gaussian smoothing kernel is adopted
only on the 10 central slices of scan instead of the entire volume to boost up the processing speed.

According to Wang et al. [53], in order to measure the distance between two sets of detected
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Figure 3.4: Motion quantification visualization for a breast, blurry MRI scan. Detection scheme: (a) detected edges in t0
(red contours); (b) detected edges in t1 (green contours); (c) detected edges in t1 (green) overlaid with edges in t0 (red);
(d) visualization of deformation vectors showing correspondence between edges in t0 and t1; (e) magnified view of the
deformation vectors in the red square in (d); (f ) color map of deformation magnitude (displacement in mm) calculated

for edge voxels in t0, red correlates with strong motion (Figure taken from [52]).

edges, a fast and non-rigid registration method with a volume preservation constraint to register t1
(moving image) onto t0 (fixed image) is employed (see Figure 3.4(d)&(e)). Then, a 3D deformation
vector representing the occurred motion direction and magnitude (strength), was assigned to each
voxel in t0. Next, the magnitude of those vectors for all the edge voxels are saved to a list, which
encoded the motion strength along edges (see Figure 3.4(f)). A set of features is extracted from the
corresponding histogram. Finally, Random Forest (RF) classifier makes decision whether a test case
had moderate or severe motion artifact.

Up till this point the motion artifact is removed from the MR sequences, therefore, the segmenta-
tion on the subtraction image can be done easier with more precision on boundaries of the lesions.

3.3.2. LESION SEGMENTATION

For this step, a semi-automatic 3D mean shift segmentation (will be discussed in Section 3.3.2) is
adopted to separate the lesion from its surrounding tissue. I developed a 3D extension of the 2D
EDISON framework [54, 55] to process 3D volumetric data. Taking advantage of the lesion binary
masks, provided by the specialist, the search area for the lesion is confined within the mask region
(see Figure 3.1). Restricting the examination area speeds up the mean shift segmentation, since this
algorithm is very slow processing large volumetric images [56].

Figure 3.5 illustrates each step of the segmentation process. First, a bounding box of area defined
by the mask is separated from the subtraction image of t1− t0 (Figure 3.5(a)). Next, mean shift
segmentation is applied, which decomposes the enhancement area into an arbitrary number of
clusters with various intensity values (Figure 3.5(b)). By mapping the intensity values of the clusters
into the uniform range, applying threshold filter and keeping only the clusters above the threshold
band value, the result will be a 3D binary volume of the enhancement (Figure 3.5(c)).
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Figure 3.5: Lesion segmentation using mean shift algorithm and applying threshold. (a) the enhancement area from
subtraction MR image defined by the mask; (b) the multi-clustered result of mean shift segmentation; (c) segmentation

result after applying threshold filter with a manual value; (d) an overlay of the segmentation result over enhancement
area; (e) the 3D illustration of the lesion segmented volume.

MEAN SHIFT ALGORITHM

The mean shift algorithm is a powerful unsupervised clustering technique introduced in 1975 by
Fukunaga and Hostetler [57]). The algorithm detects modes in the gradient of a probability density
function in an iterative scheme and represents a general non-parametric mode finding/clustering
procedure. In contrast to the classic K-means clustering approach [58], there are no embedded
assumptions neither about the shape of the distribution nor the number of modes/clusters [59].

Mean shift has been used for image segmentation by seeking the modes in a feature space com-
posed of intensity/color in addition to spatial information [60]. The applications of the mean shift
algorithm are in various fields, including clustering, segmentation, and filtering. This algorithm can
provide consistently good results [56] (see Figure 3.6).

(a) Original colored image (b) Mean shift filtered image (c) Detected boundaries

Figure 3.6: Mean shift segmentation applied on a colored image. The results are acquired using EDISON software [54]
(Ball pool photo taken from rgbstock.com)

As mentioned earlier, the mean shift technique detects modes in a probability density function
based on the Parzen Density Estimate [57]:

http://www.rgbstock.com/bigphoto/nCc3exo/Ball+pool
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N equals the number of d-dimensional vectors x1 . . . xN . The parameter h is the window radius
of the used kernel Ks . In the field of image segmentation, each feature vector is composed of the
spatial information of each pixel/voxel and the corresponding color/intensity information in the
range domain of dimension one or more. The multivariate mean shift vector in the point x is given
by [55]
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For the uniform kernel KU the calculation of the multivariate mean shift vector (Equation 3.2) be-
comes an average of vector differences. It can be shown that the mean shift vector is proportional
to the normalized density gradient estimate [55].
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where c is the corresponding normalization constant and KE is the radially symmetric Epanech-
nikov kernel given by
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with cd being a normalization constant. To ensure the isotropy of the feature space, a uniform color
space, such as the L∗u∗v∗ is typically used. In the case of gray-value images, the L∗ component is
only used. To account for different spatial and tonal variances it is reasonable to choose a kernel
window of size Sh = Shs ,hr with differing radii hs in the spatial and hr in the range domain [56].

The mean shift vector is designed to be aligned with the local gradient estimate. Therefore, it
can be shown that by successive computation of Equation 3.2 and shifting the kernel window by
mK (x), the mean shift procedure is guaranteed to converge to a point with zero gradient, i.e. to
a mode corresponding to the initial position (see (Figure 3.7(c))). Modes that are closer than hs

and hr are grouped together. For segmentation purposes, to each pixel/voxel is then assigned the
color/intensity value of the corresponding mode (see (Figure 3.7(d))). Furthermore, regions with
less than some pixel/voxel count M might be optionally eliminated [56].

The mean shift procedure is hence an effective algorithm for mode seeking in a density distri-
bution without prior calculation of the distribution itself [56].

3.4. SPHERE PACKING

Sphere packing is filling an object with a set of non-overlapping spheres. It has diverse applications
in a various fields of scientific and engineering, including automated radiosurgical treatment plan-
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(a) A sample 2D 400 ×
276 colored image be-
fore applying mean shift

(b) Corresponding
three dimensional
L∗u∗v∗ color space of
the image with 110×400
data points

(c) Decomposition of
the points acquired
from running 159 mean
shift procedures with
different initializations

(d) Mode convergence
trajectories over the
Epanechnikov density
estimate computed for
the image data set. The
peaks retained for the
final classification are
marked with red dots.

Figure 3.7: Example of a 2D feature space analysis using mean shift (Figure taken from [55])

ning, investigation of processes such as sedimentation, compaction and sintering, powder met-
allurgy for 3D laser cutting, cutting different natural crystals, and so forth. Polydisperse sphere
packing is a new and promising data representation for several fundamental problems in computer
graphics and virtual reality such as collision detection and deformable object simulation. Polydis-
perse means that the radii of the spheres can be an arbitrary real number [61].

Here, it is tried to broaden the usages of sphere packing algorithm and utilize it to classify an
object (which here is the breast lesion), using its shape features. In this work, an extended version of
sphere packing algorithm, called Protosphere1 a GPU-assisted prototype guided sphere packing al-
gorithm is used. The Protosphere is inspired by machine-learning techniques and uses a prototype-
based greedy choice to extend the idea of Apollonian sphere packing [61]. For an arbitrary given ob-
ject, it starts with the largest possible sphere that fits in the object. It iteratively inserts new spheres,
under the constraints that first, they must not intersect the already existing ones and second, they
be completely contained inside the object [16].

The Protosphere algorithm was introduced in 2010 by Weller and Zachmann [16] and has got
extended by Teuber et al [61]. It is able to efficiently compute a space filling sphere packing for
arbitrary container objects and object representations (polygonal, NURBS, CSG, etc.) under the only
precondition that it must be possible to compute the distance to the object’s surface from any point.
This packing is achieved by successively embedding the largest possible sphere into the object [61].

(a) (b) (c) (d)

Figure 3.8: Sphere packing prototype convergence visualization. (a) placing the prototype P randomly inside the object;
(b) calculating the closest point on the surface and the distance d ; (c) moving P away from the closest point; (d)

repeating this until the prototype converges (Figure taken from [61]).

Consider the largest sphere s inside O, the surface of a closed and simple object in 3D. Obviously,

1Protosphere: A GPU-Assisted Prototype Guided Sphere Packing Algorithm for Arbitrary Objects
http://cgvr.cs.uni-bremen.de/research/protosphere [Accessed on 6 September 2015]

http://cgvr.cs.uni-bremen.de/research/protosphere
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s touches at least four points of O, and there are no other points of O inside s. This implies that
the center of s is a Voronoi Node (VN) of O. Consequently, the Apollonian filling can be formulate
as an iterative computation of the VNs of the objects hull O plus the set of all spheres existing so
far. To compute the Voronoi Diagram (VD) they approximate the VNs by placing a single point, the
prototype, inside the object and let it move away from the object’s surface in a few iterations (see
Figure 3.7). By choosing a clever movement, the prototype converges automatically towards a VN
(see Algorithm 3.1). The last step of the algorithm guarantees that, after each single step, p is still
inside the object, because the entire sphere around p with radius

∥∥p −qc
∥∥ is inside the object.

Moreover, moving p away from the border, into the direction
(
p −qc

)
, leads potentially to bigger

spheres in the next iteration. Usually, ε(t ) denotes a cooling function that allows large movements
in early iterations and only small changes in the later steps. This process is parallelized and uses a
set of prototypes that are allowed to move independently instead of inserting just a single prototype,
which might end up in a local optimum rather than of converging toward the global optimum.

Algorithm 3.1 Sphere packing prototype converge

1: procedure CONVERGEPROTOTYPE (PROTOTYPE p , OBJECT O )
2: place p randomly inside O
3: while p has not converged do
4: qc = arg min

{∥∥p −q
∥∥ : q ∈ surface of O

}
5: choose ε(t ) ∈ [0,1]
6: p = p +ε(t ) · (p −qc

)
7: end while
8: end procedure

(Algorithm is taken from [61])

In order to apply sphere packing to the binary volumetric lesion segmentation ((see Figure 3.9(a))),
at first, it is converted to a mesh geometric object (see Figure 3.9(b)), then I let Protosphere pack it
with arbitrary number of spheres (here, 4000 is chosen as the maximum number of spheres inside
any lesion object) (see Figure 3.9(c)). In the following section, a couple of advantageous shape fea-
tures are elicited from the internal spheres to create a samples dataset for classifier.

3.5. NORMALIZATION

The mesh geometries, acquired from converting segmented lesions into geometric meshes, have
various sizes. As a result, the sphere coordinates from packing step also have arbitrary scales and
positions in the 3D space. As the embedded sphere coordinates are going to be used in generating
feature vectors for classifier’s dataset, their values should be in equal range. Therefore, the normal-
ization of the size and coordinates of the spheres before feature extraction is required for them to
be represented in a canonical coordinate system. The aim of the normalization step is to guarantee
the fact that same feature can properly be extracted from the same 3D object in any scale, position
and orientation [62].

Generally, there are two schemes to realize such a per-model-based normalization [63] for 3D
objects:

1. The normalization technique to find a canonical coordinate frame based on methods sim-
ilar to the Principle Component Analysis (PCA), also referred to as pose estimation or pose
registration.

2. The invariance-based technique to define and extract feature descriptors that possess the in-
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Figure 3.9: Sphere packing of the lesion 3D volume.
Top shows an example of benign lesion. Bottom shows an example of malignant lesion. (a) is the binary volumetric
segmented of the lesion; (b) is converted lesion volume into a 3D mesh geometry; (c) is the lesion packed with 200

spheres (the spheres color is size based and is only for better differentiation in visualization).

herent invariance characteristics, so as not to change under any rigid transformations. The
invariance-based approaches have been accorded increasing weight in recent research be-
cause of their robustness and simplicity [62].

In general, to guarantee the descriptive power and robustness of the feature representations, canon-
ical coordinate normalization, such as alignment and scaling is a necessary step before invariant
feature extraction [62].

In this study, the scaling by overall maxima method is used to normalize the spheres compo-
nents (x, y and z positions plus r adi us) in a way that their range remains between zero and one
disregarding the alignment. Algorithm 3.2 shows the normalization steps in pseudocode. At first,
the maximum and minimum values of all the components are calculated along with their difference
(di f f = max −mi n). Next, their minimum value of components is shifted to zero by adding the
absolute value of minimum to all the position components. Then, via dividing each component (x,
y and z positions plus r adi us) by the difference value, the range of all components is being scaled
down to between zero and one.

An example of applying normalization to a set of 5 spheres is shown in Figure 3.10.

3.6. FEATURE EXTRACTION

In this section, several shape feature extraction methods are described. In each method an array
of values is extracted as feature vector and a combination of all feature vectors is provided to the
classifier as samples dataset.

The lesion meshes as complex objects must be mapped into a feature vector in a multidimen-
sional space using feature transforms [64]. Among those transforming methods, the first three (Volume-
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Algorithm 3.2 Sphere components normalization using scaling by overall maxima method

1: procedure NORMALIZESPHERES (SPHERESLIST spher esLi st )
2: Set max = maximum(for all positions x,y,z in spher esLi st )
3: Set mi n = minimum(for all positions x,y,z in spher esLi st )
4: Set di f f = max - mi n . the diference value
5: for each spher e in spher esLi st do
6: spher e.posi t i on(X ,Y , Z ) = (

spher e.posi t i on(X ,Y , Z )+abs(min)
)÷di f f

7: spher e.r adi us = spher e.r adi us ÷di f f
8: end for
9: end procedure

(a) An example of 5 internal spheres without nor-
malization

(b) Normalized components of the same 5 spheres

Figure 3.10: An example of spheres components before and after normalization. The first three components (x, y, z)
show the position of the center and R is radius. The values range after normalization for all components are mapped

between zero and one.

Radius Histogram, 3D Spherical Shape Histogram, and Graph Topological Features) are based on the
embedded spheres, packed into the lesion mesh. The 3D Zernike Descriptor features are directly
calculated from the binary volumetric object of lesions.

In the literature [36, 65–67], there are numerous feature extraction methods, especially from 3D
models. Such methods are described comprehensively in [62]. Studying the the existing methods
got me inspirations to adapt them into a special case of usability for sphere packing. One could find
several more interesting and useful methods when there is adequate time for exploration.

3.6.1. VOLUME-RADIUS HISTOGRAM

The histogram of volume-radius feature provides an estimate for the proportion of the volume cov-
ered by spheres with a specific radius range. Some experimental observations are done on the align-
ment and structure of internal packed lesions:

• Benign lesions in comparison to malignant ones have a more regular shape mostly with oval
or round form. According to the principal essence of the sphere packing algorithm, which ini-
tially tries to occupy as much proportion as it can with the biggest sphere possible, it is found
out that the majority of their internal space is filled with a few number of very big spheres and
the rest is occupied by smaller ones with considerable differences in size.

• On the contrary, in malignant lesions, there is no such regularity: most of their volume is
occupied with middle size spheres and the rest are either big ones or small ones which are
scattered along the shape.

Therefore, a histogram can be created such that on the x-axis lies radius of the spheres and the y-axis
is the summation of spheres’ volumes with radius between two bins. An arbitrary number of bins
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in x-axis can be considered to form the radius range of spheres. On the y-axis values represent the
amount of lesion’s volume occupied by spheres with a particular radius range.

Figure 3.11 shows two examples of the mentioned histogram for benign lesions (on top) and
two examples for malignant lesions (on bottom). By collecting the corresponding value to each
radius range on x-axis, a feature vector of an arbitrary number of features can be extracted from this
method. This is one of the feature vectors needed to generate the samples dataset for the classifier.

Figure 3.11: The Volume-Radius histogram from the objects packed with 200 spheres of two examples of benign (on
top), and two examples of malignant lesions (on bottom). The difference between histogram shapes can be seen here,
according to the different distribution pattern of sphere sizes. In benign lesions most of the object is filled with spheres
having a big radius; in malignant lesions middle size spheres occupy most of the internal space. The color of spheres is

based on size and is only for better differentiation in visualization.

3.6.2. 3D SPHERICAL SHAPE HISTOGRAM

In this section a feature vector extraction method is introduced, uses uniformly distributed elements
of a 3D shape. Here, elements are the spheres positioned inside the 3D object.

I adapted the idea of 3D Spherical Shape Histogram feature extraction approach from a section
coding technique developed for retrieving 2D polygons by Ankerst et al. [64]. They introduced
3D shape histograms as intuitive feature vectors [66]. Generally, shape histograms are based on
partitioning of space in which elements reside i.e., a complete and disjoint decomposition into cells,
which correspond to the bins of the histograms [36]. They suggested three techniques for space
decomposition: a shell model, a sector model and a spiderweb model as the combination of the
former two.

Figure 3.12 illustrates the space partitioning technique, which I got inspired of. In the prepro-
cessing step, the origin of the model is moved to the centroid point. Thus the models are aligned to
the center of mass of the solid [62].
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4 shell bins 12 sector bins 48 combined bins

Figure 3.12: Shells and sectors as basic space decompositions for shape histograms. In each of the 2D examples, a single
bin is marked (Figure taken from [64])

The definitions of each space partitioning approaches are as follows:

1. Shell model: The model is decomposed into concentric shells around the model’s center
point. This representation is particularly rotation independent such that any rotation of an
object around the center point of the model results in the same histogram. The radii of
the shells are driven from the dividing the outermost shell’s radius by the number of shells
needed.

2. Sector model: The model is broken down into sectors that emerge from the model’s center
point. This approach is related to the 2D section coding method. However, there is a more so-
phisticated definition and computation of 3D sector histograms, and they define the sectors
as follows: To distribute the desired number of points uniformly on the surface of a sphere.
For this purpose, they use the vertices of regular polyhedrons and along with their recursive
refinements. Once the points are distributed, the Voronoi diagram of the points immediately
defines an appropriate decomposition of the space. Since the points are regularly distributed
on the sphere, the Voronoi cells meet at the center point of the model. For computation of
sector-based shape histograms, one does not need to materialize the complex Voronoi dia-
gram, but simply apply a nearest neighbor search in the 3D model, since the typical number
of sectors is not very large.

3. Combined model: More detailed information is represented than the pure shell models and
pure sector models in the combined model. A simple combination of two fine-grained 3D
decompositions results in a higher dimensionality. However, since the resolution of the space
decomposition is a case based parameter, the number of dimensions may easily be tuned
application based [64].

As can be seen in Figure 3.13, Ankerst et al. [64] depicted different shape histograms for the example
protein, 1SER-B, which is located on the left side of the figure. The middle figures are schematics of
the various space decompositions and, on the right side, there placed the corresponding shape his-
tograms. The histogram on top is only based on shell bins, and the one on the bottom is defined by
122 sector bins. The histograms in the middle are defined by 20 shell bins and 6 sector bins, and by 6
shell bins and 20 sector bins, respectively, and they follow the combined model. All the different his-
tograms in this example have approximately the same dimension of about 120. In these examples,
the histograms are not built from volume elements, but from uniformly distributed surface points
acquired from the molecular surfaces [62].

For the very special case of this study, each 3D model is packed by spheres instead of voxels or
points. Therefore, the method presented by Ankerst et al. [64] is adapted. The method is modi-
fied such that all the spheres inside each 3D lesion model are completely surrounded by a spherical
wireframe or cage like structure with internal shells, sectors, and bins analogous to their shape his-



3.6. FEATURE EXTRACTION 29

0

200

400

600

0

500

1000

1500

0

1000

2000

0

500

1000

120 shells

1SER-B

20 shells, 6 sectors

6 shells, 20 sectors

122 sectors

Figure 3.13: Several 3-D shape histograms of the example protein 1SER-B. The example protein 1SER-B is located on the
left side of the figure; in the middle, the protein is surrounded by various space decompositions; on the right the

corresponding shape histograms are depicted. From top to bottom, the number of shells decreases and the number of
sectors increases. All of the different histograms have approximately the same dimension of about 120 (Figure taken

from [64]).

togram.

Figure 3.14 shows an illustration of my developed approach based on the shape histogram method:

• Figure 3.14(a) shows an empty example of the proposed development for shape histogram. It
has been divided into a number of sectors (vertical lines as longitude in geographic coordinate
system), rings (horizontal lines as latitude in geographic coordinate system), and shells (con-
centric spheres with various radius). Each spherical wedge segment delimited by two sectors,
two rings, and two shells, represents a partition or fragment.

• Figure 3.14(b) shows internal spheres of a packed malignant lesion which are surrounded by
the proposed spherical wireframe. As can be seen, the inner spheres of each partition, colored
differently, showing that their centroids are inside the same partition and they belong to the
same group.

• Figure 3.14(c) shows a hypothetical fully packed sphere, divided into segments which clearly
shows how partitioning has separated the internal spheres into different groups.

Several strategies can be considered in order to choose the best location for placing the center point
in space among all the spheres. As can be seen in Figure 3.15, I examined four strategies out of many
possible ones to choose the centroid points according to the distance and the size of the spheres.

• In Figure 3.15(a), the center point’s location is calculated based on the mean value of the all
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(a) An empty surrounding spherical
cage structure, including partition-
ing components (sector, ring, shell)

(b) An example of internal spheres
of a malignant lesion partitioned
into colored groups by bins

(c) A hypothetical fully
packed sphere partitioned
into fragments by shape
histogram

Figure 3.14: Space decompositions for the proposed 3D Spherical shape histogram. In this approach the internal
spheres are surrounded by a spherical wireframe with several partitions. Then, the number of surrounded spheres

within each partition are counted as histogram bin values and feature vector elemts.

spheres center points locations in 3D space. After finding the 3D coordinates of the centroid,
I estimate its distance with all the internal spheres and choose the longest distance plus the
radius of that most distant sphere as the radius of the spherical wireframe.

• In Figure 3.15(b), the centroid is placed precisely in middle of the two most distant internal
spheres among all. Then to calculate the radius, I do exactly as I did for the first strategy.

• The third strategy is shown in Figure 3.15(c). Here, instead of finding the centroid location, I
place it right in the center of the biggest sphere among all. Then radius is estimated as the first
strategy. Consequently, the biggest sphere is not considered in the tally of histogram values,
since its center point does not belong to any of the sections.

• The last strategy is shown in Figure 3.15(d). The location of center point is acquired using
an extension of Gärtner’s Smallest Enclosing Ball method [68] based on a simple randomized
algorithm by Emo Welzl [69]. The C++ implementation of the code is publicly available2 to
calculate the Smallest Enclosing Balls of Points and also is included in The Computational
Geometry Algorithms Library (CGAL) 3 [70]. It is a recursive algorithm which guarantees to
compute the smallest sphere that contains all of the given set of packing spheres in the Eu-
clidean space.

After partitioning of the spheres, it is time to generate the feature vector. The output histogram
shows the distribution of spheres into several partitions for each lesion 3D shape. Then, the feature
vector is composed of output histogram values obtained from the tally of the number of spheres’
center points enclosed inside each partition. The number of bins in the histogram depends on the
multiplication of the quantity of sectors, rings, and shells (sector s × r i ng s × shel l s).

After creating the histogram, another interesting attribute is extracted using this technique,
which is the occupied proportion of the surrounding wireframe sphere with internal spheres re-
gardless of its partitioning. Based on the experimental observations, for benign lesions, which often
have a round shape, the surrounding sphere in more occupied with internal spheres than the ma-
lignant ones. This attribute is closer to one for benign lesions (see Figure 3.17(a)) and it is near

2Smallest Enclosing Balls of Points - Fast and Robust in C++. (Bernd Gärtner)
http://www.inf.ethz.ch/personal/gaertner/miniball.html [Accessed on 10 August 2015]

3The Computational Geometry Algorithms Library (Sitewide ATOM)
http://www.cgal.org [Accessed on 10 August 2015]

http://www.inf.ethz.ch/personal/gaertner/miniball.html
http://www.cgal.org
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(a) The center point is
placed in the mean distance
of the all spheres’ center
points

(b) The center point is
placed in the middle of the
two most distant spheres

(c) The center point is
placed right in the center of
the biggest sphere

(d) The center point is
located according to the
Smallest Enclosing Ball of
Balls algorithm

Figure 3.15: Different strategies for choosing the place for spherical wireframe center point. Choosing various center
point locations affects the radius of the spherical wireframe. Different colors of spheres represent that they belong to

different sections based on 3D space decomposition by spherical wireframe.

Figure 3.16: Corresponding histogram of the proposed 3D space decomposition. The histogram bins represent each
segment of spherical cage and bin values are the tally of the number of spheres’ center points enclosed inside each

partition. The number of bins in the histogram depends on the value of sector s × r i ng s × shel l s. Different colors of
internal spheres represent their belonging to particular sectors which is a bin in corresponding histogram.

zero for malignant ones (see Figure 3.17(b)). Finally, histogram values for bins and filled proportion
attribute are put together as the feature vector from this method.

3.6.3. GRAPH TOPOLOGICAL FEATURES

This section expresses how to extract descriptions from a 3D shape using a graph-based represen-
tation. Such driving the elements of shape into significant parts is basically used for classification
of the 3D objects [67]. Recently, graph theory has been used to characterize the spatial arrangement
of the object’s components by constructing a graph considering each embedded component as the
node.

The drawback of several available graph based algorithms (Delaunay, Voronoi, Minimum Span-
ning Tree) is that they do not allow for elicitation of local spatial attributes from complex networks
such as the ones emerge from large volumetric MR images, possibly containing millions of voxels
[71]. Similar to an approach proposed by Ali et al. [71], in this paper, I exploited the distribution of
embedded spheres from sphere packing as a geometrical signature to retrieve shape features from
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(a) (b)

Figure 3.17: Proportion of smallest enclosing spherical wireframe, filled by embedded spheres. For benign lesions most
of the enclosing spherical wireframe is filled by internal spheres (a). For malignant lesion, the enclosing wireframe is

occupied mostly by empty space (b).

any 3D objects. Here, I considered the center point of each embedded sphere as a node to construct
a graph. The spatial relationship between nodes is translated into edges. Each edge between any
pair of nodes has a certain weight with respect to their distance. Spatial constraints are employed
to deconstruct the entire graph into subgraphs and then, I extract global and local graph based fea-
tures.

Applying the graph theory assists characterizing the complex structures of networks, leading
to a better realization of dynamic interactions exist between their components [71] and extracting
graph-based descriptions. In the following, G = (V ,E ,δV ,δE) is an undirected, labeled graph of
nodes V and edges E where δV : V → Rp , δE : E → Rd associate to every node and edge numerical
attributes.

I presume that graph G can have multiple edges from one node to another. A path p is a sub-
graph of G , defined by a sequence of l nodes p = (v1 · · ·vl ) such that for each i , (vi vi+1) ∈ E . The
length of p is defined as l (p) = f (δV (vi ), vi ∈ p,δE (e),e ∈ p), where f is a real function defined on
the set of nodes and edges. p is said to be the shortest path between vi and v j if for all path p ′

between these two nodes, l (p) < l (p ′) [67].

Taking advantage of two libraries that provide graph algorithms and data structures, I was able
to generate several graph compositions by connecting the internal spheres together. The Boost
Graph Library (BGL)4, a part of Boost C++ Libraries, allows me to generate Prim’s Minimum Span-
ning Tree and Kruskal’s Minimum Spanning Tree (see Figure 3.18(a)(b)) and cluster graph structures
by giving the shortest path between each two nodes [72]. Neighborhood Graph Library (NGL)5, a
lightweight library written in C++ that supports a variety of geometric neighborhood graphs in ar-
bitrary dimensions, serves to construct Relative neighbor, Gabriel, and β-Skeleton graphs [73] (see
Figure 3.18(c)(e)(f)).

Further, clustering is applied to the graphs by restricting the neighbor search to kmax nearest
neighbors of a center point. The kmax is a constant factor larger than the k value selected for k
nearest neighbor graphs [74]. Figure 3.19 illustrates applying the k-nearest neighbors algorithm

4Boost C++ Libraries (The Boost Graph Library):
http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/index.html [Accessed on 26 August 2015]

5Neighborhood Graph Library (NGL): http://www.ngraph.org [Accessed on 26 August 2015]

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/index.html
http://www.ngraph.org
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(a) Kruskal’s Minimum Spanning
Tree

(b) Prim’s Minimum Spanning Tree (c) Relative Neighborhood Graph
(RNG)

(d) Fireworks Graph (e) Gabriel Graph (f) β-Skeleton Graph

Figure 3.18: Different graph structures, acquired from various algorithms. The graph structures are obtained from
connections between 200 internal spheres.

on a Gabriel graph with different kmax values, which divides the graph into isolated clusters. The
kmax defines the neighborhood distance, so the less value it has, the less nodes are in each other’s
neighborhood and consequently, more clusters will be generated.

Once the graph structure is separated by different clusters, many graph characteristics can be
obtained from the structure such as graph compactness: the more complete and dense the graph is,
the more likely it is compact [75]. The compactness feature has different amounts among the graphs
of benign and malignant lesion. Thus, a number of cluster validity indices for graph partitioning
were adopted to compare different graph partitions [76] as morphological specifications.

In the following, the indices based on graph topology, forming the desired feature vector are
pointed out.

GRAPH COMPACTNESS INDICES

Edge Density

These are two simple indices to show graph compactness. Such indices are simply computable,
but they do not consider the actual structure of the graph. In many cases, two graphs can have a
different structure, although having the same edge density value,s followed by the number of nodes
and edges [76].
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(a) kmax = 2, c = 51 (b) kmax = 3, c = 5 (c) kmax = 4, c = 3

(d) kmax = 8, c = 2 (e) kmax = 19, c = 1 (f) kmax = 200(n), c = 1

Figure 3.19: k-nearest neighbors algorithm with various kmax values. The c value represents the number of clusters
resulted from applying the k-nearest neighbor algorithm to a Gabriel graph with 200 nodes. Different color indicates

disparate clusters. As the kmax values go higher, there are more neighbors for each node in the graph and as a result, the
number of clusters decreases. When kmax is equal to the number of nodes, they all are in the same neighborhood.

Therefore, the graph contains only a single cluster.

E

N
,

E

N 2
(3.5)

In Figure 3.20, G1 and G2 have same compactness E/N = 13/8.

Compactness index Cp
As introduced in [77], the compactness index C p considers the connectivity of a connected graph
G . It is computed in quadratic time as follows:

C p =
M ax −

N−1∑
i=1

N∑
j=i+1

d(vi , v j )

M ax −Mi n
(3.6)

where Mi n and M ax are, respectively, the minimum and maximum value of
∑
i

∑
j

d(vi , v j ).

There are N (N −1)/2 couples (vi , v j ) of distinct nodes. If Q is defined as the maximal distance be-
tween two nodes, d(vi , v j ) is between 1 and Q. Therefore, Mi n = N (N −1)/2 and M ax =Q.N (N −
1)/2 [76].
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Figure 3.20: The same edge density compactness index value for two different graphs G1 and G2 (Figure taken from [76])

In Figure 3.20, C p(G1) = 0.48 and C p(G2) = 0.69.

New compactness index Cp*
Boutin et al. [76] introduced a new normalized compactness index denoted Cp* which considers a
similarity measure instead of a distance.

Considering two nodes vi and v j , they defined similarity: si m(vi , v j ) = 1/d(vi , v j ), if vi and v j

are connected and si m(vi , v j ) = 0, if vi and v j are disconnected. Note that si m value lies between
0 and 1. Now, Cp* is computed by:

C p∗ =

N−1∑
i=1

N∑
j=i+1

si m(vi , v j )

N (N −1)/2
(3.7)

Cp* is delimited between 0 and 1. Cp* is zero, if G is completely disconnected. Cp* is one, if G is a
complete graph.

In Figure 3.20, C p∗(G1) = 0.73 and C p∗(G2) = 0.69.

Linear Structure of the Graph

Considering graph features, Harary et al. [78] first introduced a notion called stratum. This no-
tion were used later by Botafogo et al. [79] to show the complexity of the hyperlinks as a directional
graph structure. For that case, stratum reveals to what degree the hypertext is organized so that
some nodes must be read before the others [79].

I adapt the stratum index to indicate the linear structure of the graph.

Converted Distance Matrix (CDM): The distance matrix contains the distances of every node to
every other. When a node does not reach another node, the entry in the distance matrix is infinite.
The sum of distances from a node to all other nodes is used to formalize the notion of centrality.
The converted distance matrix is defined as follows [79]:

Let C be the converted distance matrix and M be the distance matrix. then

ci , j =


Mi j Mi j 6=∞

K other wi se

(3.8)
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The choice of K , a finite conversion constant, strongly influences the centrality of nodes. A new no-
tion of converted distance matrix zero is defined, when the value for K is chosen zero. Zero distance
(K = 0) means that there is no path between two nodes (d(vi vi ) =∞). For this study, K is considered
as the maximum distance in all indices of matrix plus one.

Centrality Metrics of graph
This section provides several definitions over the converted distance matrix:

As defined in [79], the converted out distance (COD) for a node i is the sum of all entries in row i
in the converted distance matrix (C).

CODi =
∑

j
Ci j (3.9)

Likewise, the converted in distance (CID) for the node i is the sum of all entries in column i in the
converted distance matrix:

C I Di =
∑

j
C j i (3.10)

The converted distance (CD) of a graph is given by the sum of all entries in the converted distance
matrix:

C Di =
∑

i

∑
j

Ci j (3.11)

the Relative Out Centrality (ROC) metric for a node i is defined as:

ROCi =C D/CODi (3.12)

The higher the ROC metric of a node, the more central it is (the inverse of the COD). Note that the
ROC is normalized in relation to the size of the graph (CD), making it more convenient for compar-
isons between graphs.

The Relative In Centrality (RIC) metric is defined similarly as:

RICi =C D/C I Di (3.13)

Figure 3.21 shows a directed graph with the associated converted distance matrix and its relative
out-centrality and in-centrality metric. In this example, the value of K (the conversion constant) is
6, equal to the number of nodes in the graph.

Definitions of status, contrastatus and prestige (ai and b j ):

• Let G be an undirected graph (undigraph).

• Let d(u, v) be the distance between nodes u and u in G .

• The distance sum from vi , in G (represented by ai ) is the sum of the finite distances d(vi ,u)
for all u in G . Thus, ai is the sum of the finite entries in the i th row of the distance matrix
DM(G).

• The distance sum to vi in G (represented by b j )) is the sum of the finite distances d(u, v j ) for
all u in G . Thus, b j is the sum of the finite entries in the j th column of the distance matrix
DM(G).

• The total distance
∑

i

∑
j di j ,di j 6=∞ within a undigraph G is the sum of all the finite distances

d(vi , v j ) in G . Thus,
∑

_i
∑

j di j ,di j 6=∞ is the sum of all the finite entries in DM(G).
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a b c d e f COD ROC

a 0 1 1 2 2 3 9 10.2

b 1 0 1 1 2 2 7 13.1

c 6 6 0 6 1 2 21 4.3

d 6 6 6 0 6 1 25 3.7

e 6 6 6 6 0 1 25 3.7

f 6 6 6 6 6 0 30 3.1

CID 25 25 20 21 17 9 92

RIC 3.7 3.7 4.6 4.4 5.4 10.2

a

b c

ed

f

Figure 3.21: A graph with its converted distance matrix and associated metrics. The converted distance matrix elements
are based on distances between each two nodes in the graph (Figure taken from [79])

According to the above definitions, It can be seen that the status of node vi , is given by ai , and the
contrastatus of node v j is given by b j .

Another property of each node in the graph, namely its prestige can be defined. Harary [78]
suggests that the net status of an individual, given by ai –bi , is a better indication of the prestige of
an individual in a company [79]. Examples of the status, contrastatus, and prestige of each node in
the graph can be seen in Figure 3.22.

a

b c

ed

f

a b c d e f Stat Prest

a 0 1 1 2 2 3 9 8

b 1 0 1 1 2 2 7 6

c ∞ ∞ 0 ∞ 1 2 3 1

d ∞ ∞ ∞ 0 ∞ 1 1 -2

e ∞ ∞ ∞ ∞ 0 1 1 -4

f ∞ ∞ ∞ ∞ ∞ 0 0 -9

CStat 1 1 2 3 5 9

Figure 3.22: A graph with the "status", "contrastatus" and "prestige". Note: In a directional graph the nodes that reach
all the other nodes have status identical to their COD metric. Similarly, nodes that are reached by all other nodes have

identical contrastatus and CID metric (Figure taken from [79])

Linear Absolute Prestige (LAP)

The linear absolute prestige (LAP) of a graph with n nodes is identical to the absolute prestige of
a linear graph with n nodes. As an example, the LAP of graph in Figure 3.23(a) is 16, since this is the
absolute prestige of a graph with 4 nodes.

LAP is given by the following formula:

L AP =


n3

4 , if n is even.

n3−1
4 , if n is odd.

(3.14)
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a

b

c

d

a b c d Stat Prest

a 0 1 2 3 6 0

b 3 0 1 2 6 0

c 2 3 0 1 6 0

d 1 2 3 0 6 0

Cstat. 6 6 6 6 24 0

Distance Matrix (DM)

(b)

a

b

c

d

a b c d Stat Prest

a 0 2 3 3 6 6

b ∞ 0 1 2 3 2

c ∞ ∞ 0 1 1 -2

d ∞ ∞ ∞ 0 0 -6

Cstat. 0 1 3 6 24 16

Distance Matrix (DM)

(a)

Figure 3.23: LAP examples of linear and circular graphs. (a) This linear graph is used as a basis for finding the linear
absolute prestige of all graphs that have 4 nodes. The absolute prestige of the graph is 16. (b) In this graph, no structural

clue to which node should be read first is present. The absolute prestige of the graph is 0 (Figure taken from [79]).

To define the stratum of the graph, the absolute prestige of the graph is normalized by dividing
it by its LAP. Formally, the stratum (St ) is defined as

Stratum(St) = absolute pr est i g e/LAP. (3.15)

The Stratum (St) metric was originally designed to capture the linear structure of the graph. Maxi-
mum stratum is achieved in a linear graph. If the stratum is equal to zero, this indicates that graph
is structurally more complex [79].

INDICES BASED ON DIAMETER AND DISTANCE

Dunn’s Index

Considering Ci and C j as the closest clusters according to average distance d and Ch is the graph
cluster with the largest diameter, Dunn’s index [76, 77, 80] is acquired by:

D(C ) = d(Ci ,C j )

di am(Ch)
(3.16)

d(Ci ,C j ) and di am(Ch) are respectively related to inter and intra-cluster connectivity. D is not
robust since it depends only on few clusters and few edges between them.

Figure 3.24, in both G3 and G4, closest clusters are C2,C3 and largest cluster is C1. So, Dunn’s
indices are the same.

Figure 3.24: Same Dunn’s index for G3 and G4 (Figure taken from [76])
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Davies Bouldin index

Davies Bouldin index introduced by David L. Davies and Donald W. Bouldin in 1979 [81], is a
metric for evaluating clustering algorithms which indicates the similarity of clusters and how good
the clustering has been done [76, 77]. This index is defined by:

DB = 1

K

K∑
i=1

max
j 6=i

[
di am(Ci )+di am(C j )

d(Ci ,C j )

]
(3.17)

Small values of DB correspond to compact clusters. The Davies Bouldin index is more robust than
Dunn’s index [76].

INDICES BASED ON INTER & INTRA-CLUSTER EDGES

A cut index called MinMaxCut

As defined in [76], the cohesiveness of cluster Ci is computed as follows:

Cohesi veness = E ′
i

Ei
(3.18)

By considering E ′
i as the number of edges between Ci , and the other clusters, MinMaxCut is defined

as [82]

Mi nM axCut =
K∑

i=1

E ′
i

Ei
(3.19)

MinMaxCut attempts to maximize the community similar to the node communities while minimiz-
ing the degree of similarity between the nodes. The smaller value MinMaxCut has, the graph has a
higher connection density [83].

In Figure 3.25, MinMaxCut is the same for G5 and G6 ( 1
2 ) whereas G6 contains components with

smaller diameter.

Figure 3.25: Same MinMaxCut, conductance and coverage values for both graphs (Figure taken from [76])

Cohesion of a graph clustering

Cohesion (WSS) is a measure of how closely nodes are related within a cluster and is measured
by the within sum of square distances to the mean distance:

W SS =∑
i

∑
x∈Ci

(x −mi )2 (3.20)
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where [84] is a cluster, m is the mean distance value within each cluster and x is a the node distance
from cluster center [84].

Coverage of a graph clustering

Coverage of a graph clustering C is the fraction of intra-cluster edges within the complete set of
edges [85].

Cov(C ) =

K∑
i=1

Ei

E
(3.21)

Large values of coverage shows better quality of clustering of C . This index is easy to compute but it
does not include the number of nodes Ni in Ci [76].

INDICES BASED ON MODULARIZATION QUALITY

Modularization quality MQ

The function of Modularization quality is based on the difference between intra and inter cluster
connectivity [86]: Intra-cluster connectivity of Ci is computed by:

i ntr a(Ci ) = Ei

Ni (Ni −1)/2
(3.22)

where Ni (Ni − 1)/2 is the maximum number of intra-cluster edges. Inter-cluster connectivity be-
tween clusters Ci and C j is defined by:

i nter (Ci ,C j ) = Ei j

Ni N j

Let define i ntr a =
K∑

i=1

Ei
Ni (Ni −1)/2

K and i nter =
K∑

i< j

Ei j
Ni N j

K (K−1)/2

MQ = i ntr a − i nter =
K∑

i=1

Ei
Ni (Ni −1)/2

K −
K∑

i< j

Ei j
Ni N j

K (K−1)/2

(3.23)

Unfortunately, this index computes simple instead of weighted means when clusters can be of dif-
ferent size [76].

In Figure 3.26, MQ ignores that C1 is larger than C2.

A new Modularization quality index MQ*

Boutin et al. [76] provided a new weighted MQ* index by modifying the original MQ as follows:

MQ∗ =
∑
i

Ei∑
i

Ni (Ni−1)
2

−

∑
i< j

Ei j∑
i< j

Ni N j
(3.24)

MQ* takes into account the clusters’ connectivity and their size unlike MQ.

In Figure 3.26, C1 is larger than C2 with a smaller intra-cluster connectivity, so MQ* is smaller
than MQ (In fact, MQ∗= 0.44 and MQ = 0.64).
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Figure 3.26: Two graph clusters with MQ* smaller than MQ (Figure taken from [76]).

INDICES BASED ON NODE’S NEIGHBORHOOD

Indices based on node’s neighbors, by clustering measure of a node itself, can define if a node is well
related to its cluster or not.

Silhouette index

Considering a node vi which belongs to a cluster C j , and the closest cluster to node vi (according
to average distance) is denoted Ch , the silhouette index is defined as in [76, 77] by:

s(vi ) = d(vi ,Ch)−d(vi ,C j )

max(d(vi ,C j ),d(vi ,Ch))
(3.25)

Note that −1 ≤ s
(
vi

) ≤ 1. Additionally, when s(vi ) is close to 1, vi is said to be well clustered. When
s(vi ) is inferior to 0, vi should be assigned to the nearest neighboring cluster [76].

In Figure 3.26, s(m)= (2.5−1)/2.5 = 0.6, s(k)= (3.5−1)/3.5 = 0.71.

For a given cluster C j we compute silhouette S j by:

S j =

N j∑
i=1

s(vi )

N j
(3.26)

A global silhouette value GS is also computed by:

GS =

K∑
j=1

S j

K
(3.27)

A new index denoted GS*

As proposed by [76], a new index GS* is defined that takes into account the size of clusters:

GS∗ =

K∑
j=1

N j S j

K∑
j=1

N j

=

N∑
i=1

s(vi )

N
(3.28)

In Figure 3.26, C1 is larger than C2 so its contribution is more important in GS*.
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INDICES BASED ON CO-CLUSTEREDNESS

In [76], indices based on repartition of N (N−1)/2 couples of nodes (vi , v j ) in partitions P = {C1, . . . ,CK }
and P′ = {C ′

1, . . . ,C ′
T } are presented (see Table 3.1).

Partition of
{
(vi , v j )

}
Same cluster in P’ Different cluster in P’

Same cluster in P a c
Different cluster in P b d

Table 3.1: Graph indices based on repartitioning (Table taken from [76]).

Jaccard Coefficient

Jaccard coefficient is defined between P & P ′ as follows:

J = a

a +b + c
(3.29)

J computes the probability that two nodes belonging to a same cluster in a partition also belong to
a same cluster in the other partition.

Folkes and Mallows index

Folkes and Mallows introduced another index:

F M =
√

a

a +b

a

a + c
(3.30)

a / (a +b) is the probability that two nodes belong to a same cluster in P if they belong to a same
cluster in P ′. Now, a / (a + c) is the probability that two nodes belong to a same cluster in P ′, if they
belong to a same cluster in P [76].

Rand Statistic

Rand Statistic measures similarity between P & P ′ as follows:

R = a +d

a +b + c +d
(3.31)

Unlike J and FM, Rand statistic is calculated with d . It computes the probability that two nodes
belong either to a same cluster or to different clusters in both P and P ′ [76].

Hubert and Arabie’s statistic

Hubert and Arabie [87] modified the Rand Statistic index the such that its maximum is 1 and its
expected value is 0, if classifications are selected randomly [76].

Huber t = a ·d −b · cp
(a +b)(c +d)(a + c)(b +d)

(3.32)

In Figure 3.27, a = 9, b = 4, c = 3, d = 12 and so J = 0.56, FM = 0.72, R = 0.75, Hubert = 0.50.
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Figure 3.27: Comparison of cluster partitions P = {C1, . . . ,CK } and P′ = {C ′
1, . . . ,C ′

T } (Figure taken from [76]).

Feature vector based on graph topology
Figure 3.28 shows an example of extracting all the above mentioned graph topological features from
a graph containing 200 nodes (spheres), clustered with different K −M ax values, resulting different
number of edges and clusters. Sometimes, indices return infinite values, which are not accepted by
classifier algorithm. Therefore, the are replaced by zero value in the feature vector.

Feature Value Feature Value

Edge Density 1.725 Coverage 0.57971013

Edge Density* 0.0086249998 Modularization quality MQ -34.993408

Compactness Index Cp 0.24017853 New MQ* 0.037906155

New Cp* 0.13441421 Global Silhouette index (GS) 0.48201945

Linear Structure (Stratum) 0.080078728 New GS* 0.44905704

Dunn's Index 0.37598059 Jaccard Coefficient 0

Davies Bouldin 2.3165514 Folkes and Mallows index 0

MinMaxCut 0.0077294684 Rand Statistic 0.61100501

Cohesion 20.242949 Hubert and Arabie's statistic 0

Feature Value Feature Value

Edge Density 1.3 Coverage 0.76923078

Edge Density* 0.12267283 Modularization quality MQ -14.527812

Compactness Index Cp 0.12267283 New MQ*

New Cp* 0.09278556 Global Silhouette index (GS) 0.50787872

0.044762693

Linear Structure (Stratum) 0.048521247 New GS* 0.44993725

Dunn's Index 0.31838393 Jaccard Coefficient 0

Davies Bouldin 2.4751117 Folkes and Mallows index 0

MinMaxCut 0.016153846 Rand Statistic 0.75879395

Cohesion 13.591794 Hubert and Arabie's statistic 0

No. nodes: 200
No. Edges: 345
K-Max: 4
No. Clusters: 3

No. nodes: 200
No. Edges: 260
K-Max: 3
No. Clusters: 5

Figure 3.28: Graph topological features extraction example. Top, calculated features of graph structure from 200 nodes
obtained from K −M ax = 4 clustering, including 345 edges and 3 clusters. Bottom, features of a graph from the same

200 nodes obtained from K −M ax = 3 clustering, including 260 edges and 4 clusters. Some indices return infinite values
casewise, which are not accepted by classifier algorithm. Therefore, the are replaced by zero value.

The values of all the above mentioned indices are integrated into the graph based feature vector
in the processing pipeline to feed the classifier.

3.6.4. 3D ZERNIKE DESCRIPTORS

Moment-based representations are sorts of object descriptors that have been exploited broadly for
pattern recognition [88], object recognition [89], and shape matching [90]. They provide a com-
pact numerical expression of the spatial features that enables rapid comparisons. Moments such as
2D/3D Zernike moments are based on the theory of orthogonal polynomials [91], which allow de-
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scriptors to be constructed to an arbitrary order with some redundancy. It is also possible to recon-
struct the object from its moments with quality determined by the number of terms used [88, 92].

The Zernike polynomials were introduced by Frits Zernike in 1934 [93]. Historically, Zernike
introduced a set of orthogonal-normalized (Orthonormal) radial polynomials primarily dedicated
to optical applications [94]. Later, the Zernike functions were used to to define Zernike moments
of 2D images [91] (see Figure 3.29 for 2D Zernike terms). More recent works used 3D Zernike mo-
ments to derive robust invariant descriptors of 3D images and/or objects and perform image/object
reconstruction from a finite set of 3D Zernike moments [94].

Figure 3.29: Graphical illustration of top 20 Zernike terms as a pyramid. Zernike terms (Z m
n ) expansion pyramid is a

function of term’s radial degree (or order) n and azimuthal frequency m. It is the basis for classifying aberrations as lower
(n ≤ 2) and higher-order (n > 2) in ophthalmology. On left: associated Zernike terms and names of aberrations; the so

called j −number (commonly referred as mode), the polynomial ordering number, is dependant on n and m,
determining the position of the term in the Zernike terms’ expansion. (Figure taken from www.telescope-optics.net)

The Zernike functions Z m
nl (r ), are base functions that are constructed to form an orthonormal

set over the unit ball (i.e. 0 É r 2 É 1, r 2 = x2 + y2 + z2). They are based on the familiar spherical
harmonics, Y m

l (θ,φ) which θ and φ are the standard angular spherical coordinates. The spherical
harmonics can be described as [95]:

Y m
l (θ,φ) = N m

l e i mφP m
l (cos θ) = N m

l

(
x + i y√
x2 + y2

)m

P m
l (

z

r
), (3.33)

The normalization factor N m
l is given by:

N m
l =

√
2l +1

4π

(l −m)!

(l +m)!
, (3.34)

and P m
l (cos θ) are the associated Legendre polynomials.

http://www.telescope-optics.net/monochromatic_eye_aberrations.htm
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The 3D Zernike Descriptors are series expansion of an input 3D function, which allow rotation
invariant and compact representation of a 3D object that is considered as the 3D function. The
mathematical foundation of the 3D Zernike Descriptors was laid by Canterakis [96]. Later, Novotni
and Klein [97] applied them to 3D object retrieval. Below is a brief mathematical derivation of them.
For detailed derivations and discussions, refer to the literatures [96, 97].

The 3D Zernike functions are defined as follows [95]:

Z m
nl (r ) =

k∑
v=0

q v
kl r 2v em

l (r ), (3.35)

with the following definitions for parameters:

em
l (r ) = r l Y m

l (θ,φ), k = (n −1)/2,

q v
kl = (−1)k+v

22k

p
2l +4k +3

(2k
k

)(k
v

)(2(k+l+v)+1
2k

)
/
(k+l+v

k

)
,

(3.36)

The coefficients q v
kl are chosen to ensure orthonormality over the unit ball; they can also be written

in terms of n as follows:

q v
nl = (−1)

n−1
2 +v

p
2n +3

Γ
[

3+l+n
2 + v

]
v !Γ

[
1+ n−1

2 − v
]
Γ

[3
2 + l + v

] , (3.37)

where Γ[x] is the complete Gamma function. The Zernike functions, therefore, are a 3D generaliza-
tion of the spherical harmonics (see Figure 3.30), which are only orthonormal on the surface of the
unit ball [95].

Figure 3.30: The 3D spherical harmonic basis. Visual representations of some of the first real spherical harmonics.
Green color represents positive function values and red color represents where it is negative. The distance of the surface

from the origin indicates the value of Y m
l (θ,φ) in angular direction (θ,φ). (Figure taken from www.quora.com)

Two instances of Zernike functions for (nl ) = (53) and (nl ) = (82) can be seen in Figure 3.31. It
shows the isoamplitude surface for the real part of the Zernike function for each individual function,

https://www.quora.com/Why-isnt-the-first-electron-in-any-subshell-filled-in-the-orbital-with-the-magnetic-quantum-number-0-symmetry-and-then-second-in-any-random-magnetic-quantum-number
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Z53
-3 Z53

-2 Z53
-1

Z53
0

Z53
1 Z53

2 Z53
3

Z53
all Z82

all

Figure 3.31: Example visualizations of selected 3D Zernike functions Z m
53 and Z m

82 . The gray halo around each function
represents the embedding sphere. (Figure taken from [95])

at an amplitude level equal to 0.1. Note that, as Zernike functions are defined over the unit ball, to
compute the moments using them, the object has to be scaled down to be fitted inside the unit ball
before the computation [95].

For the current work, I used Zernike descriptors as complementary features to retrieve the shape
specific feature vector of each lesion object [62]. Since the segmented lesions are originally in 3D
volumetric voxelized format, I used a method to compute 3D Zernike descriptors from voxelized
models as natural extensions of spherical harmonics based descriptors presented by Novotni and
Klein6 [97], which captures object coherence in the radial direction as well as in the direction along
a sphere. The Zernike invariants acquired from each lesion forms a feature vector to be combined
with other feature vectors and feed the classifier.

3.7. CLASSIFICATION USING RANDOM FOREST

Recently the applications of machine learning have drawn more attention in medical computing as
a way to integrate the knowledge and experience of physicians in the areas such as computer aided
diagnosis, detection and segmentation. The main function of these algorithms is to generalize from
observed evidences and make predictions about unseen data [98].

In machine learning, every instance in the dataset presented to the algorithm, shares the same
set of features. These features may be continuous, categorical or binary. The learning is called
supervised if the algorithm is provided by the known labeled instances (the corresponding correct
outputs), on the contrary, if instances are unlabeled, the learning is called unsupervised. The pur-
pose of unsupervised (clustering) algorithms is to discover unknown, but useful, classes of items.
Reinforcement learning is another type of machine learning in which the training data are provided
to the learning system by the environment (external trainer) in the form of a scalar reinforcement
signal that establishes a measure of how proper the system acts. The learner must discover which
actions yield the best reward, by trying each action in proper sequence [99].

In the last decade, a number of machine learning methods have been introduced to be applied
in several categories. Recently Caruana & Niculescu-Mizil [100] presented a large-scale empiri-
cal comparison between ten supervised learning methods: SVMs, neural nets, logistic regression,

63D Zernike Descriptors (University of Bonn)
http://cg.cs.uni-bonn.de/project-pages/3dsearch/downloads.html [Accessed on 10 August 2015]

http://cg.cs.uni-bonn.de/project-pages/3dsearch/downloads.html
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naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees,
and boosted stumps. Their surprising results show that prior to calibration, bagged trees, random
forests, and neural nets give the best average performance across all eight metrics and eleven test
problems.

Random forests can be trained on large, very high-dimensional datasets without significant
overfitting within a reasonable amount of time, since the tree construction is guided by the data
density. RF is also very efficient at runtime, since matching a sample against a tree is logarithmic
in the number of leaves. It also can tolerate a significant amount of labeling noise and errors in the
training data [101]. Additionally, the independency of each tree in the forest to others, can greatly
reduce the variance of estimation. Furthermore, the structure of random forest is flexible and more
trees can be added to the forest later [102]. In the following section the random forest working
mechanism is describe briefly.

RANDOM FOREST

Among many existing machine learning techniques, random forests became a popular ensemble
learning algorithm, as it achieve state-of-the-art performance in variety computer vision tasks. RF
intuitively and flexibly offers a probabilistic foundation for dealing with different learning tasks. By
effective partitioning of high-dimensional feature spaces via divide and conquer strategy and model
probability distributions in each cell of these partitions, they permit to approximate any arbitrary
functions or densities for classification, regression or clustering tasks. The divide and conquer strat-
egy can be briefed as follows:

"Partition observations by using a set of simple decisions in a hierarchical fashion" [98].

In this section the basic algorithm of Random Forests for classification is briefly described. A
detailed description of RFs is beyond the scope of this work and can be found in [103].

A Random Forest is formed by many binary decision trees which are inducted and trained on a
training set consisting of multi-dimensional input data points x and the desired system output (e.g.
class label) y . Each tree has access only to a random part of the whole data set, which this subset
enters the tree at the root node [104]. One of the data dimensions f is randomly selected and a
simple binary split is performed [105]. Equation 3.38 shows an example of the binary split where θ
is an arbitrary threshold:

x f < θ (3.38)

The threshold θ splits the data points: the ones that fulfill thresholding are circulated to the left child
node, all others to the right child node. There are several methods to define the threshold θ (e.g. by
random sampling, as median, or by optimize the purity of the child nodes in consideration of the
sample class distribution). The threshold splitting is applied to all nodes recursively, but always
with different data dimensions and threshold values. The stop condition is if a maximal tree height
is reached or too few data samples are available. Therefore, a leaf (terminal node) is created, that
simply estimates the relative class-frequency Pt (c|nt ) of the data points, which reached this leaf
(node nt of tree t ) [105].

To estimate the class label of a query data point x, the query is propagated through all T trees of
the forest beginning at the root node. Its way ends in exactly one leaf nt in each tree t . The individual
class probabilities Pt (c|nt ) of those leaves are combined using a simple average (see Equation 3.39),
which provides the final estimate of the class’ a posteriori distribution [105].

P (c|x) = 1

T

T∑
t=1

Pt (c|nt ) (3.39)
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In RF each node has access to a specific subset of the whole dataset, namely the fraction of samples
that are propagated by its parent to that node. During the training process these samples provide
class labels which allow the computation of a local estimate of the class distribution within this
node.

To sum up, in a decision tree, an input is entered at the top and as it traverses down the tree
the data gets bucketed into smaller assortments. RF combines these trees with the notion of an
ensemble (see Figure 3.32). Thus, in ensemble terms, the trees are weak learners and the RF is a
strong learner [106].

Figure 3.32: Random forest a combination of decision trees. At each node for some number m 1) m predictor variables
are selected randomly; 2) The predictor variable is used to do the best binary split on that node; 2) at the next node,

randomly choose another m from all predictor variables and do the same (Figure taken from citizennet.com)

To classify the lesions types in this work, an implementation of RF algorithm existing in The
VIGRA Computer Vision Library (Vision with Generic Algorithms) [107] is used. It is adopted since
it was already implemented in MeVisLab (described in Chapter 4) and because of convenience of
usage. For evaluation other tools were adopted (see Chapter 5).

https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/


4
DEVELOPMENT

To develop the processing pipeline of this study, I used the MeVisLab1 medical image processing
framework. In the following sections more details regarding this powerful framework will be dis-
cussed.

MEVISLAB FRAMEWORK

MeVisLab represents a powerful, modular framework for image processing research and develop-
ment with a special focus on medical imaging. It allows fast integration and testing of new algo-
rithms and the development of clinical application prototypes.

MeVisLab includes advanced software modules for segmentation, registration, volumetry, as
well as quantitative morphological and functional analysis. The implementation of MeVisLab makes
use of a number of well-known third-party libraries and technologies, most importantly the appli-
cation framework Qt, the visualization and interaction toolkit Open Inventor, the scripting language
Python, and the graphics standard OpenGL.

MeVisLab is developed by MeVis Medical Solutions AG in close cooperation with the research in-
stitute Fraunhofer MEVIS. A part of the modules contained in the MeVisLab distribution are directly
contributed by Fraunhofer MEVIS [108].

Figure 4.1 shows MeVisLab graphic user interface (GUI) in Mac OS X.

4.1. PROCESSING PIPELINE

MeVisLab is a modular development framework. Based on modules, networks can be created and
also applications can be built.

To support the creation of image processing networks, MeVisLab offers an IDE that allows data-
flow modeling by visual programming [109].

A fundamental part of MeVisLab is the object-oriented MeVis Image Processing Library (ML)
providing a generic framework for image processing.

Each algorithm is represented as a self-descriptive module inside the development environ-
ment. Via an intuitive graphical user interface, these functional units can be combined to form
complex and powerful image processing networks that are executed by a core image processing

1MeVisLab website: http://www.mevislab.de/ [Accessed on 26 August 2015]
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Figure 4.1: MeVisLab GUI on Mac OS X. (Figure taken from mevis-research.de)

controller, the ML host. Currently, more than 5000 image processing modules are available, includ-
ing image filtering, segmentation, and statistical analysis.

Generally, in networks the processing flow begins with a module to load the data and set it to a
proper orientation. Further, there are processing and filtering modules, which receive one or more
inputs as image or data and generate outputs in various types.

Figure 4.2 shows a simple example of combining multiple ML modules and creating an image
processing network. In this example the network is formed to apply Convolution and Morphology
filters respectively on the input image, combining their output using Arithmetic module and show
the output results in View2D module. As can be seen in this figure, the 2D image on the left side
presents the original MR image before applying any filter. The results of combining two mentioned
filters are shown on the right side image. One can see the effect of processing applied on the input
data by opening several viewers and compare them slice by slice using several visualization tools
provided in MeVisLab.

On the same basis, I developed several modules to perform each step of my processing pipeline
and by connecting them, I created a network to extract features from the input data and do the
classification.

Figure 4.3 shows an outline of the processing pipeline used in the current work. The data flow
in network begins from bottom to top. At each step there are several modules that process the data
and pass the output to a higher level.

As can be seen in Figure 4.3, there are two types of modules (the processing boxes) are used in
the network. ML Modules (blue boxes) and Macro Modules (yellow boxes). Those are fundamental
parts of MeVisLab and are the object-oriented image processing units. ML module stands for MeVis
Image Processing Library Module is a request-driven, page-based, modular, expandable C++ image
processing library supporting up to six image dimensions (x, y, z, color, time, user dimensions). It

http://www.mevis-research.de/~ritter/awakeideas/mevislab-macosx.html
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Figure 4.2: MeVisLab image processing network example. Each algorithm is represented as a self-descriptive module
which can be combined with other modules to form complex and powerful image processing networks (Figure taken

from mevislab.de)

offers a priority-controlled page cache and high performance for large data sets. Macro Modules
can be created to encapsulate subnetworks of modules, scripting functionality and high-level algo-
rithms [108].

Data connections (connectors) are provided to establish the links between modules. The output
of one module can simply attach to another module’s input to form a processing pipeline in which
every module does an individual operation on the data.

In the following, each section of the processing network is describe in more details:

1. Pre-processing: As Figure 4.4(a) shows, in this step several modules are connected to do the
preprocessing task and prepare the input for segmentation step. The module (1) loads the
DCE-MR image sequence to the network as (2) loads the corresponding lesion binary mask
provided by the radiologist. The two modules (3) reformat the image and the corresponding
mask from any view that MR scan is taken to orthogonal view. Module (4) corrects the proba-
ble motion artifact in input MR sequence. Module (5) calculates the subtraction image from
the MR sequences (t1− t0). Module (6) masks the lesion region from the subtraction image
with the corresponding mask loaded.

2. Segmentation: This part of the network consists of modules doing segmentation and output
the lesion within its enclosing box. As Figure 4.4(b) shows, this part begins with module (7)
for mean shift segmentation. This module has two input images, the breast MR subtraction
image and binary mask image. Module (8) applies a thresholding filter on the mean shift
result and only passes the values above the defined threshold (here is 0.5). Two modules (9)
and (10) put the segmented lesion into its smallest enclosing box by limiting the size of output
to the lesion size to boost up the processing speed.

3. Sphere Packing: The module (11) shown in the Figure 4.5 packs the input lesion volume with
4000 spheres. The output of this module is shown with the number (12).

4. Normalization: Module (12) in Figure 4.5 normalizes the output spheres from the sphere

http://www.mevislab.de/mevislab/features/image-processing/
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packing step and feeds the three upper feature extraction module sets.

5. Volume-Radius Histogram: The module set (14) are responsible for extracting the Volume-
Radius histogram. The very bottom module in this set controls the new incoming data, the
ML module in middle, creates the histogram and the ones on top extract the feature vector
out of histogram.

6. 3D Shape Histogram: The module set (15) extracts the shape histogram features. The main
function is the macro module in the middle, which forms the spherical wireframe around all
the packing spheres.

7. Graph Features: The module set (16) forms a graph based on input sphere data and extract
all the earlier mentioned graph features from graphs topology.

8. Zernike Invariants: The module set (17) generates Zernike invariants directly from the lesion
binary volume acquired from the segmentation step.

9. Feature Combination The module (18) gathers all the feature vectors generated by several
modules sets and forms an all-inclusive linear feature vector in addition to the lesion’s ID
and class label (benign or malignant). All the acquired feature vectors are inserted into a CSV
dataset file to provide to the machine learning algorithm.

10. Evaluation: After gathering all the samples in the dataset, It can be used to train the classifier.
As can be seen in Figure 4.3, the samples dataset is loaded via the macro modules at the bot-
tom to feed the machine learning modules. The modules VigraRanodmForestTraining is to
train and create the forest model for RF algorithm. Module VigraRanodmForestClassification
is the classification part of RF, which works based on the already created forest structure.

In Chapter 5, further analyzing and evaluation tweaks are done using Weka and R software on the
dataset created by MeVisLab.

COMPUTER-AIDED DIAGNOSIS (CADX) TOOL

Eventually, the whole processing framework was integrated into a Computer-Aided Diagnosis (CADx)
interface to investigate its real applications. Using such tool, the radiologist can load the breast MR
scans into the system, navigate through all the slices of 3D image and analyze the possible lesion
enhancements.

Figure 4.6 shows a screenshot of the CADx GUI. One can annotate the suspicious lesion area by
placing one or multiple seed points on each part of the distribution. Then, the tool automatically
segments the lesion area using the inserted seed point and region growing algorithm. As can be
seen in Figure 4.6, a seed point is placed on the lesion in breast subtraction image (yellow rectangle)
and the corresponding 3D illustration of segmented lesion area is shown (in red) on the right side
panel of the tool.

Now the lesion volume is ready to be analyzed by the framework in order to classify the type of
the annotated lesion. The simple interface of the classification framework lies at the bottom right
part of the interface of the CADx.

By pressing the "Classify" button, the result of the classification is shown to the user. For this
case, the threshold of classification results is defined equal to 0.5 to discriminate the benign and
malignant lesions. This value can also be change by user via the interface, but for simplicity of use
it is hidden at this level.
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(1) Load Image and 
      mask the lesion

(2) Lesion
      Segmentation

(3) SpherePacking

(4) Normalization

(5) Volume-Radius
      Histogram feature (6) 3D Shape Hist-

      ogram features
(7) Graph
      features (8) Zernike

      features

(9) Combine features

(10) Evaluation

Figure 4.3: The processing network used in this work. The pipeline starts from bottom to top, including modules to load
breast data, acquire the subtraction image, mask the lesion area (1), segmentation (2), sphere packing (3), normalization

(4) and several feature extraction module groups (5-8). On top, the feature vectors are combined to form a dataset (9)
and use to train the classifier and do the classification/evaluation (10).
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(a) The preprocessing part of pipeline. It begins
with loading image and binary lesion mask and
continues with motion correction, calculation of
subtraction image and masking the lesion area.
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(b) The segmentation part of
pipeline. This part segments the
lesion, filters the segmentation by
threshold and confines the lesion
into its bounding box.

Figure 4.4: The two initial parts of this study’s processing network in MeVisLab.
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Figure 4.5: The third part of this study’s processing pipeline in MeVisLab. In this part of the network the lesion binary
volume is packed with spheres, then normalized and sent to several feature extraction modules. Finally, all feature

vectors are combined to form a sample dataset.
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Figure 4.6: The application of the proposed framework as a module integrated into a Computer-Aided Diagnosis (CADx)
tool. Using CADx tool, radiologists can analyse the MR scans using their subtraction image. By placing a seed point

(yellow rectangle on the MR image) over any suspicious enhancement, the tool can segment the lesion area and show
the corresponding 3D illustration (the red 3D object on right panel). Using lesion classification component , the CADx

tool is able to detect the type of segmented lesion and show the results using either benign or malignant labels.





5
EVALUATION AND RESULTS

To evaluate the performance of the presented method, a test dataset of MR images of 86 patients en-
closing 106 lesion enhancements (38 benign and 68 malignant) was adopted. Only the subtracted
image from the first two MR sequences (t1− t0) were processed of dynamic contrast enhanced im-
ages. The image resolution varied from 256×128×80 to 512×256×16 with different voxel sizes. The
reference lesion binary masks were manually annotated by an experienced radiologist. Consider-
ing the lesion distribution, the radiologist annotated either one or several binary masks for a single
lesion, thus he/she has specified the lesion type.

The lesions segmentations were acquired using a semi-automatic mean shift segmentation ap-
proach. By packing the obtained lesion volume with spheres, several feature vectors, including
volume-radius histogram, 3D spherical shape histogram, and graph features from different aspects
of the packed objects were extracted. As a rule of thumb, among most of the learning algorithms,
the classification accuracy can be improved by combining features to gain a more effective classi-
fier [110, 111]. Therefore, by providing a combination of acquired feature vectors, the all-inclusive
dataset of features is assembled to train the classifier.

Experimentally it turned out that, even combining the sphere features with the invariants fea-
ture vector achieved from Zernike descriptor, excels the classification results. Therefore, Zernike
invariants also were integrated into my combined features.

5.1. PERFORMANCE EVALUATION MEASURES

The quality measures of classification are taken from a confusion matrix which records correctly
and incorrectly recognized examples for each class. Table 5.1 presents a confusion matrix for binary
classification, where tp are true positive, fp are false positive, fn are false negative, and tn are true
negative counts.

Class \Recognized as Positive as Negative
Positive tp fn

Negative fp tn

Table 5.1: A confusion matrix for binary classification (Table taken from [112]).

Researchers have introduced different parameters to evaluate the performance of machine learn-
ing algorithms and classifiers. Accuracy is one of the most used empirical measures shows the prob-
ability of a sample being correctly classified; however, it does not distinguish between the number
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of correct labels of different classes [112]:

accur ac y = tp + tn

tp + fp + fn + tn
(5.1)

In contrast, there are the following two measures that separately estimate a classifier’s performance
on different classes:

sensi t i vi t y = tp

tp + fn
(5.2)

and

speci f i ci t y = tn

fp + tn
(5.3)

The applications of sensitivity and specificity are often in bio- and medical and in studies involved
image and visual data [112].

In many areas of applications, there is a class of special interest (usually positive). Other classes
are either left as is (multi-class classification) or combined into one (binary classification). Here, the
measures of choice is calculated on the positive class:
Precision is a function of true positives and examples misclassified as positives (false positives):

pr eci si on = tp

tp + fp
(5.4)

Recall is a function of its correctly classified examples (true positives) and its misclassified examples
(false negatives):

r ecal l = tp

tp + fn
= sensi t i vi t y (5.5)

F-score is evenly balanced when β= 1. It favors precision when β> 1, and recall otherwise.

F − measur e =
(
β2 +1

)∗pr eci si on ∗ r ecal l

β2 ∗pr eci si on ∗ r ecal l
(5.6)

ROC provides a comprehensive classifier performance evaluation as defined by:

ROC = P (x|posi t i ve)

P (x|neg ati ve)
(5.7)

P (x|C ) denotes the conditional probability that a data entry has the class label C . An ROC curve plots
the classification results from the most positive classification to the most negative classification
[112, 113].

In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive rate
(100-Specificity) for different cut-off points of a parameter. In this curve each point represents a
sensitivity/specificity pair corresponding to a particular decision threshold. The area under the ROC
curve (AUC) is a measure of how well a parameter can distinguish between two diagnostic groups
(diseased/normal) [114].



5.1. PERFORMANCE EVALUATION MEASURES 59

To evaluate the machine learning methods, the results of three popular classifiers, including Ad-
aBoost, Naive Bayes, and Random Forests were compared using Weka software version 3.6 [115]. As
can be seen in Figure 5.1, Random Forest classifier outperforms the other two regarding the average
results in almost all factors.

In the results statistics

• TP Rate is the rate of true positives in results.

• FP Rate is the rate of resulted false positives.

• Precesion is defined as the fraction of elements correctly classified as positive out of all the
elements the algorithm classified as positive (see Equation 5.4).

• Recall is the fraction of elements correctly classified as positive out of all the positive elements
(see Equation 5.5).

• F-Measure is a weighted average of the F-Measures of the classes, weighted by the proportion
of how many elements are in each class (see Equation 5.6).

• ROC Area is the area under the curve (AUC), the evaluation for the classifier performance (see
Equation 5.7).

The 10-fold cross validation method [116] is used among other several methods available (e.g. thresh-
olds, mean precision, and precision above) to evaluate the RF classifier results. Figure 5.2 shows
OOB (out-of-bag) ROC curve and error rate graphs obtained from the RF classifier results. The OOB
data is used to get a running unbiased estimate of the classification error as trees are added to the
forest. Thus, it is used to get estimates of variable importance [117]. Error rate is progressively
shown for the number of trees built which is useful to decide the optimum number of trees to build
the forest.

Totally, 252 features obtained from several mentioned methods, which were combined as an
all-inclusive feature vector. Here, the composition of this feature vector with the best optimum
parameters and number of features from each method are presented:

• The first part of feature vectors includes 50 features denotes the volume-radius histogram
with the labels V olRad Hi sto01−V olRad Hi sto50.
Several evaluations are done in order to acquire the optimum number of histogram bins using
only volume-radius histogram features and regardless of other attributes. The results can be
seen in Figure 5.3 the maximum accuracy acquired from dividing the spheres radius range
into 50, 55 and 80 bins for the histogram apart from other features. Therefore, the value of 50
bins was chosen as the lowest number of bins to gain the maximum accuracy results.

• The second part of feature vectors includes 111 features denotes the 3D spherical shape his-
togram with the labels ShapeHi sto01−ShapeHi sto110 and ShapeHi stoF i l l . The first 110
features resulted from partitioning the enclosing spherical wireframe by 11 rings, 10 shells,
and 1 sector (11×10×1 = 110). These values are obtained from a brute-force search method
to acquire the best results (see Figure 5.4).
In this group of features, the last one represents the proportion of the enclosing wireframe
sphere occupied by internal spheres’ volumes.
A further evaluation showed that among four different methods to decide the center point
of enclosing sphere (see Figure 3.15), placing the center point in the middle of the two most
distant internal spheres provides the best accuracy.

• The third part of feature vectors includes 72 features denotes the Zernike moments with the
labels Z eni ke01−Z eni ke72. This number is obtained from the Zernike moments descriptors
with the Maximum Order of 15, again obtained by brute-force searching the best accuracy



60 5. EVALUATION AND RESULTS

(a) The ROC curve comparison

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.956 0.184 0.903 0.956 0.929 0.929 0 (Malignant)
0.816 0.044 0.912 0.816 0.861 0.929 1 (Benign)
0.906 0.134 0.906 0.906 0.904 0.929

0.559 0.211 0.826 0.559 0.667 0.781 0 (Malignant)
0.789 0.441 0.5 0.789 0.612 0.68 1 (Benign)
0.642 0.293 0.709 0.642 0.647 0.745

0.912 0.158 0.912 0.912 0.912 0.899 0 (Malignant)
0.842 0.088 0.842 0.842 0.842 0.899 1 (Benign)
0.887 0.133 0.887 0.887 0.887 0.899 Weighted Avg.

Ranodom Forest
Weighted Avg.

ML Algorithm

NaiveBayes
Weighted Avg.

AdaBoost

(b) The comparison of classification results in different machine learning algorithms

Figure 5.1: The comparison of classification results between three classifiers. Here, the results of three popular
classifiers were compared with my dataset using Weka v3.6 software [115]. Random forest outperforms the other two. (a)

shows the ROC curve of each classifier. (b) shows the statistical classifiers results.

among the classification results (see Figure 5.5).

• The forth part of feature vectors includes 15 features denotes the graph features. The fea-
tures’ labels consist of two parts: the word "Gr aph_" plus the name of the graph feature, i.e.
Gr aph_ed g eDensi t y or Gr aph_compactnessIndexC P . Again by brute-force searching
for the best combination of parameters, Gabriel Graph was chosen to get the highest accu-
racy among all the graph structures.
Furthermore, by trying different graph clustering parameters, the best results were acquired
from the K-Max clustering parameter equal to n. This means the features acquired from a
unified graph structure with no clustering. This gives the best classification accuracy for graph
features.
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(b) Random Forest error rate progressively for the num-
ber of trees built. Useful to decide the optimum number
of trees to build.

Figure 5.2: Charts of Random Forest analysis.

FEATURE SELECTION

As a rule of thumb, it is important for a machine learning algorithm to generate decision rules that
have high predictability or reliability. Using unordered rule sets, can arise conflicts between the
rules, i.e., two or more rules cover the same example but predict different classes [118]. It is there-
fore important to use mechanisms to prevent over-fitting of the training data [111]. Feature subset
selection and feature ranking are common ways to prevent this matter [119].

For that reason, feature selection based on their importance and their impact on the classifi-
cation results is adopted to select a subset of relevant features to construct the model. Rattle: A
Graphical User Interface for Data Mining using R [120] is used to get the top 30 feature ranking. In
Rattle variable importance is described by the Mean Decrease Accuracy (MDA) criterion or the Mean
Decrease Gini (MDG or Gini index), and it represents a ranking of variables in terms of their impor-
tance as predictors. MDG reflects the overall goodness of fit, while the MDA depends on how well
the model actually predicts. The two indices measure different things, but they are related [121].
The MDA is thought to be a better measure [122].

Figure 5.6 shows the variable importance plot obtained from RF using Rattle [120]. It can be seen
that among the 30 most important features in both MDA and MDG rankings, the first place belongs
to the features of volume-radius histogram method (black features). Zernike moments features are
in the second place of importance, especially in MDA ranking. The third rank belongs to the graph
features, including only three features of New Compactness Index CP*, linear structure and Dunn’s
Index. As not many spherical shape histogram features can be seen among the most important
features, they place forth.

Accordingly, the number of feature space can be reduced by removing the redundant one from
the dataset. Some classifiers can be misled by irrelevant or redundant such as functionally depen-
dent, attributes. Hence, criteria such as the number of irrelevant or redundant attributes could also
be considered [123]. As a result, only the features in top 30 rankings were kept to do the another
evaluation and the rest were excluded from the training dataset.

Table 5.3 shows the classification results and some evaluation statistics using only the top 30
features acquired from both MDA and MDG feature rankings. Notice the Area under ROC values
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Figure 5.3: Classification accuracy only based on Volume-Radius Histogram features. Using a brute-force search several
bin values were tried to obtain the best classification accuracy. The maximum accuracy (84%) was acquired from 50, 55

and 80 number of bins for volume-radius histogram method isolated from other features.

that has increased in comparison to the evaluation with all 252 attributes and is also slightly higher
in MDA ranking. Therefore, the top 30 most important features based on the MDA ranking were
chosen to do the further optimizations.

PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal component analysis (PCA) is a well-known method for feature extraction. PCA linearly
transforms a high-dimensional input vector into a low-dimensional one whose components are
uncorrelated by calculating the eigenvectors of the covariance matrix of the original inputs [124].

The new components are called principal components. By using only the first several eigen-
vectors sorted in descending order of the eigenvalues, the number of principal components can be
reduced. It is the dimensional reduction characteristic of PCA method [124].

Weka software has been used to perform principal components analysis and transformation of
data in conjunction with a Ranker search. In this software dimensionality reduction is accomplished
by choosing enough eigenvectors to account for some percentage of the variance in the original
data - default value is 0.95 (95%). Attribute noise can be filtered by transforming to the PC space,
eliminating some of the worst eigenvectors, and then transforming back to the original space [125].

After applying the principal component analysis on the top 30 attributes and choosing the vari-
ance of 90% for eigenvectors, the best results were achieved. PCA transformed the 30 attributes in
the dataset to the following five principal components with some weighting applied:

1. −0.244vol Sum07−0.244vol Sum11−0.243vol Sum06−0.243vol Sum08−0.243vol Sum10

2. 0.337Z eni ke08+0.336Z eni ke09+0.336Z eni ke04+0.335Z eni ke03+0.335Z eni ke01

3. 0.636ShapeHi sto80+0.63ShapeHi sto69−0.341ShapeHi sto28−0.128Z eni ke07
−0.099vol Sum44
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Figure 5.4: Classification accuracy only based on 3D shape Histogram features. Using a brute-force search method,
different combination of the number of shells, rings and sectors were tried to obtain the best classification accuracy. In
the plot, the different combination of dots is shown in the lower part. Each dot shows the number of shells (in green),
the number of sectors (in red) and the number of rings (in blue). The corresponding classification accuracy results of
the sections combination are placed in the higher part of the plot. The maximum accuracy (78.35%) is acquired from
the combination of 11 shells, 10 rings and 1 sector to form the spherical wireframe. These results show the accuracy of

this method apart from other feature extraction methods.

4. 0.651vol Sum44−0.468Gr aph_newC P∗−0.35Gr aph_Dunn′sIndex
−0.264Gr aph_Li near Str uctur e −0.167ShapeHi sto28

5. 0.677vol Sum44+0.388ShapeHi sto28+0.375Gr aphnewC P∗+0.284Gr aph_Dunn′sIndex
+0.232Gr aph_Li near Str uctur e

Using only the mentioned five principal components - which are the combination of top 30 features
- creating RF model using Weka only takes 0.04 seconds. This time shows a significant decrease in
comparison to the time needed for creating the model before applying PCA, which was 0.03 sec-
onds. Using all the 252 features with no ranking and normalization this time was 0.06 seconds (see
Table 5.3).

The summary of the classifier evaluation results using the final five features can be seen in the
following tables 5.3 and 5.2:

As mentioned earlier, the area under the receiver operating characteristic (ROC) curve (AUC)
is used as a very popular performance measure for classifiers [126], which serves as a quantitative
evaluation measure for the processing pipeline [10]. It is a measure of difference between distribu-
tions of the estimated probability that an object belongs to class 0 and class 1. The classification
rule will generally be better the more these two distributions differ. It concentrates attention on
how well the rule differentiates between the distributions of the two classes. It is not influenced by
external factors which depend on the classification usage [127].

To sum up, the proposed method in differentiating between malignant and benign lesions, achieved
the accuracy of 89.62%, precision of 90.1%, and area under the ROC curve (AUC) of 0.972 using Ran-
dom Forest classifier. The processing time for the trained classifier to provide the results is around
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Figure 5.5: Classification accuracy only based on Zernike moments features. Using exhaustive search, different
Maximum order values were tried to obtain the best classification accuracy.

The maximum accuracy (80.19%) is acquired from the Zernike moments with maximum order equal to 15. These
results show the accuracy of this method apart from other feature extraction methods.

4.2 seconds using a 3.5 GHz Intel CPU and a GeForce GTX 680 graphics card.

Figure 5.7 shows some of samples in evaluation which are correctly classified ((a), (b), (c), (d)),
along with the cases which are classified incorrectly ((e), (f)). Several illustrations can be seen in the
figure which represent different steps of feature extraction process.



5.1. PERFORMANCE EVALUATION MEASURES 65

VolRadHisto44
ShapeHisto28
VolRadHisto18
ShapeHistoPortion
VolRadHisto21
VolRadHisto15
VolRadHisto30
Graph_Dunn’sIndex
VolRadHisto13
VolRadHisto04
VolRadHisto12
Graph_LinearStructure
Zenike08
VolRadHisto19
Zenike07
ShapeHisto80
VolRadHisto08
Zenike04
VolRadHisto16
Zenike03
Zenike01
ShapeHisto69
Graph_newCP*
Zenike09
VolRadHisto07
VolRadHisto06
VolRadHisto11
VolRadHisto05
VolRadHisto10
VolRadHisto09

4 5 6 7
Mean Decrease Accuracy (MDA)

ShapeHisto80
VolRadHisto44
VolRadHisto18
Zenike08
VolRadHisto14
VolRadHisto23
Zenike07
VolRadHisto15
Zenike03
Zenike09
VolRadHisto17
Zenike04
Graph_Dunn’sIndex
ShapeHisto69
Zenike01
VolRadHisto21
VolRadHisto13
VolRadHisto04
Graph_LinearStructure
VolRadHisto12
VolRadHisto19
VolRadHisto16
VolRadHisto08
Graph_newCP*
VolRadHisto05
VolRadHisto07
VolRadHisto11
VolRadHisto06
VolRadHisto10
VolRadHisto09

0.0 0.4 0.8 1.2
Mean Decrease Gini (MDG)

Variable Importance Random Forest

Figure 5.6: Variable importance in Random Forest evaluation. On left, the Mean Decrease Accuracy ranking depends on
how well the model actually predicts. On right, the Mean Decrease Gini ranking reflects the overall goodness of fit. The

two indices measure different things, but they are related [121].

Feature set TP Rate FP Rate Precision Recall F-Measure ROC Area Class a b
All features 0.956 0.211 0.89 0.956 0.922 0.9 0 64 4 a = 0

0.789 0.044 0.909 0.789 0.845 0.9 1 6 32 b = 1
Avg. 0.896 0.151 0.897 0.896 0.894 0.9
MDA features 0.941 0.184 0.901 0.941 0.921 0.957 0 64 4 a = 0

0.816 0.059 0.886 0.816 0.849 0.957 1 7 31 b = 1
Avg. 0.896 0.139 0.896 0.896 0.895 0.957
MDG features 0.956 0.184 0.903 0.956 0.929 0.963 0 65 3 a = 0

0.816 0.044 0.912 0.816 0.861 0.963 1 7 31 b = 1
Avg. 0.906 0.134 0.906 0.906 0.904 0.963
PCA on MDG 0.941 0.211 0.889 0.941 0.914 0.965 0 64 4 a = 0

0.789 0.059 0.882 0.789 0.833 0.965 1 8 30 b = 1
Avg. 0.887 0.156 0.887 0.887 0.885 0.965
PCA on MDA 0.941 0.184 0.901 0.941 0.921 0.972 0 64 4 a = 0

0.816 0.059 0.886 0.816 0.849 0.972 1 7 31 b = 1
Avg. 0.896 0.139 0.896 0.896 0.895 0.972

(a) Detailed accuracy by class (b) Confusion matrix

Table 5.2: (a) shows evaluation resuotls of random forest classification on all the features, after applying MDA, MDG,
PCA on MDA features subset and PCA on MDG features subset. (b) shows the classification results in classifier’s output
confusion matrix. The row indicates the true class, the column indicates the classifier output. Each entry is the number

of instances of row that were classified as column.
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Evaluation Statistic All features MDA features MDG features PCA on MDG PCA on MDA
Total Number of Instances 106 106 106 106 106
Number of Attributes 252 30 30 5 5
Correctly Classified Instances 95 (89.62%) 95 (89.62%) 96 (90.56%) 94 (88.67%) 95 (89.62%)
Incorrectly Classified Instances 11 (10.37%) 1 (10.377%) 10 (9.43%) 12 (11.32%) 11 (10.37%)
Kappa statistic 0.7676 0.7704 0.79 0.748 0.7704
Mean absolute error 0.233 0.169 0.1592 0.1686 0.2659
Root mean squared error 0.3166 0.2752 0.2659 0.2769 0.2651
Relative absolute error 50.5503 % 36.6541 % 34.5461 % 36.5722 % 35.4876 %
Root relative squared error 65.9921 % 57.3609 % 55.4142 % 57.7064 % 55.2579 %
Time to build RF model 0.06 0.04 s 0.05 s 0.03 s 0.03 s
Area under ROC (AUC) 0.9 0.957 0.963 0.965 0.972

Table 5.3: Random forest evaluation results using MDA and MDG feature selections and also applying PCA on their
results using Weka software. All features column shows the evaluation statistics acquired from all the features with no

feature selection. MDA features column shows the classification statistics acquired after feature selection of Mean
Decrease Accuracy (MDA) ranking. MDG features column shows the same statistics for Mean Decrease Gini (MDG)
variable importance. PCA on MDG column shows the RF evaluation statistics after applying Principal Component

Analysis (PCA) on the MDG feature selection. PCA on MDA column shows the RF evaluation results after applying PCA
on MDA feature ranking. Based on the AUC values, MDG shows slightly better results than MDA; however, after applying

PCA on both, the AUC of MDA method is slightly higher than AUC of MDG.
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Figure 5.7: Classification evaluation sample data. In this figure several steps of feature extraction are illustrated for
different benign and malignant cases. From left to right: the original lesion volume, the packed lesion geometry with

spheres, the graph topology based on connecting the center points, enclosing spherical wireframe that partiotions
lesion’s surrounding space to acquire elements (embeded spheres) distributions, volume-radius histogram, and the

corresponding chart based on the Principal Components (PC) attributes of the lesion are represented. (a) & (b) show
two examples of true positive cases which their types are benign and they are classified as benign too. (c) & (d) show two

examples of true negative cases which their types are malignant and they are classified as malignant too. (e) show an
examples of false negative case which its type is malignant but it is classified as benign. (f ) show an examples of false

negative case which its type is benign but it is classified as malignant.





6
SUMMARY AND CONCLUSIONS

This chapter briefly reviews the thesis, summarizes the key contributions and findings, outlines
failed experiments and the limitations of the research undertaken, and discusses opportunities for
future research.

THESIS SUMMARY

Chapter 1 provided an introduction to the field of the research and the following statement of the
goal underlying the research:

-classification of the non-mass lesions to benign or malignant types, using merely the
morphological features.

In order to achieve that goal, the following approach was proposed:

1. Using the method of sphere packing to acquire multiple morphological features of
lesion structures.

2. Evaluating the performance of the new method using real clinical breast MRI data.

Chapter 2 presents some background knowledge of dynamic contrast-enhanced MR imaging, breast
MRI, breast lesions and their kinetic, morphological and textural analysis. The chapter followed by
a literature review which states that not many works are done to classify non-mass breast lesions.

Chapter 3 presents the materials used and the method outline. The processing steps starting from
motion compensation and lesion segmentation pre-processing and continues by sphere packing
the lesions volume, normalization and feature extraction from Volume-Radius histogram, 3D spher-
ical shape histogram, Graph topological and Zernike invariants methods. Finally, the Random For-
est algorithm is used to evaluate the results using 10-fold cross validation over the dataset of the
combination of all the features.

Chapter 4 presents the proceeding pipeline used in MeVisLab software and the integration of the
work in a CADx system.

Chapter 5 presents the evaluation results in several steps before and after applying feature selec-
tion methods. The evaluations are done using the Random Forest machine learning since it outper-
formed the other two algorithms used to compare their performance.

69
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6.1. FAILED EXPERIMENT

Here, an experiment which was done to acquire different type of features is pointed out. Since the
classification results of this method was not satisfactory, its feature was excluded from the classifier’s
dataset, thus it is considered as failed experiments.

LESION ALIGNMENT TOWARD THE NIPPLE POSITION

Based on the literature, the distributions of the mammary gland and the ductal system of the breast
are approximated to linear structures in a radial direction toward the nipple [128]. Therefore, in a
normal breast, the distributions of lesions that extend along the duct are also in the direction toward
the nipple [129]. This characteristic of lesion was adopted as a measure to specify their malignancy.

Since cancerous lesions have a distribution pattern among the surrounding tissue and the di-
rection of the distribution pattern is generally toward the nipple, this could be a significant feature,
especially for malignant lesion detection. Accordingly, by detecting the nipple position in the breast
containing the lesion and acquiring its distribution direction, their alignment can be measured.

In order to get the orientation of each lesion, Principal component analysis (PCA) [130] is used
to get the first eigenvector of the geometry starting from the centroid point of the lesion. Instead
of directly computing the PCA from volumetric lesion, the eigenvector calculation is done on the
internal spheres from the sphere packing step. The nipple position in each breast is also I also
extracted and the nipple vector was drawn going from the lesion’s centroid toward the nipple seed
point (see Figure 6.1).

Figure 6.1: Distribution orientation of the lesion and nipple direction. The figure shows a sphere packed lesion inside
the breast. The yellow sphere on the apex of each breast represents the nipple position. Red vector inside the packed

lesion is the first PCA eigenvector shows the main distribution orientation of internal spheres. Cyan vector which goes
from the centroid of the lesion toward the nipple position is the nipple vector. The alignment of these two vectors could

be used as a feature to classify malignant lesion.

Having nipple vector and first eigenvector are enough to acquire their alignment. It is done
by first normalizing the both vectors and computing their dot product using Equation 6.1, which
represents this concept in n dimensional space. The value of dot production between two vectors
is equal to 1, if they are parallel (fully aligned) or it is 0, if two vectors are orthogonal.
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A ·B =
n∑

i=1
Ai Bi = A1B1 + A2B2 +·· ·+ AnBn (6.1)

The classification evaluation results only based on the dot product value feature can be seen in the
following tables 6.1 and 6.2:

RF statistics Feature results
Total Number of Instances 106
Number of Attributes 1
Correctly Classified Instances 55 (51.88%)
Incorrectly Classified Instances 51 (48.11%)
Kappa statistic -0.0289
Mean absolute error 0.4834
Root mean squared error 0.596
Relative absolute error 103.6718%
Root relative squared error 123.4462%
Area under ROC (AUC) 0.455

Table 6.1: Random forest evaluation statistics of lesion orientation toward the nipple.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class a b
0.612 0.641 0.621 0.612 0.617 0.455 0 41 26 a = 0
0.359 0.388 0.35 0.359 0.354 0.455 1 25 14 b = 1

Avg. 0.519 0.548 0.521 0.519 0.52 0.455

(a) Detailed accuracy by class
(b) Confusion

matrix

Table 6.2: (a) shows random forest classification accuracy for lesion orientation toward the nipple.(b) shows the
classification results in classifier’s output confusion matrix in which the row indicates the true class, the column

indicates the classifier output. Each entry is the number of instances of row that were classified as column.

The acquired value of accuracy is 51.8% with the AUC of 0.45. The AUC value is always between
0 and 1, since it is a portion of the area of the unit square. However, because random guessing
produces the diagonal line between (0, 0) and (1, 1), which has an area of 0.5, no realistic classifier
should have an AUC less than 0.5 [131]. As a result of low accuracy and low AUC, the mentioned
attempt is marked as failed experiment.

6.2. OPPORTUNITIES FOR FURTHER WORK

The proposed classification method may potentially be improved by alternating several implemen-
tation steps:

• Segmentation step: The used semi-automatic mean shift segmentation algorithm needed the
user interaction and decision on the level of thresholding. As a result, the segmentation could
be very subjective. To overcome this weakness in the future work, Watershed Transform based
strategies for image segmentation [132] or Region Growing method using manual seed points
[133] can be adopted.

• Sphere packing step: The volumetric objects were converted to mesh geometries regardless
of the measurement units. A mapping measure of lesion’s volumetric object to sphere units
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could be obtained to perform a better packing defining the maximum or minimum of the
spheres radius values.

• Normalization step: The lesion volumes could be normalized before sphere packing step
instead of normalizing the spheres acquired from packing. Apart from that, the alignment-
normalization (pose registration) processes could be used to align object from internal spheres
to its canonical coordinate frame before extracting features [62].

• Volume-Radius histogram step: In addition to summation of spheres’ volumes in histogram,
the uncovered area of the spheres could also be investigated to acquire more features.

• 3D spherical histogram step:

1. Instead of counting the center points of spheres in each section of the enclosing spher-
ical wireframe, either the volume of internal spheres bounded by each fragment or the
number of spheres full bounded by that fragment could be used for histogram values.

2. To locate the center point of the enclosing spherical wireframe, several more possibilities
could be investigated, e.g. placing the center point among the 10% of the biggest or
smallest spheres.

3. The orientation of the surrounding spherical wireframe could be determined using sev-
eral methods. For instance, Principal component analysis (PCA) and eigenvectors could
be used as reference for orientation and eigenvalues could be used to define its radius.

• Graph topological features step: More topological features using more graph structures could
be investigated such as graph symmetry.

• Zernike Invariants step: The Zernike moments could be acquired from the internal spheres
as an object rather than voxelized lesion volume.

• Lesion alignment toward the nipple (failed experiment): Other eigenvectors could be in-
vestigated to prove the efficiency of the method. The lesion volume could also be used to
investigate its alignment with the nipple vector.

• Evaluation step: To compare the machine learning algorithms, more of ML methods could be
investigated. For feature selection, also more feature raking algorithms could be considered
with various number of top attributes.

Future work could also consider the combination of kinetical or textural features in order to obtain
a higher performance. In that case, the classification of several sub types of benign or malignant
lesions also could be investigated.

6.3. LIMITATIONS

In this study several limitations were encountered, these included:

• Regarding the amount of work needed to be done for this study, the time limit of a master
thesis was insufficient to achieve all defined the goals.

• A bigger dataset with more lesion samples could be examined to get even better evaluation
outcomes.

• The “ground truth” lesions mask used in the study originated from a single expert reader’s
manual segmentation. Ideally, several datasets from different experts could be used to ac-
count for intersubject variability.
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